

Fritz Lekschas

SEMANTIC BODY BROWSER
A web-based tool for graphically exploring an organism’s body
in respect to the CELDA ontology

Bachelor Thesis

Bioinformatics
Department of Computer Science and Mathematics

Freie Universität Berlin

 I

The bachelor thesis has been realized at the Stem Cell Research & Knowledge
Management group of Prof. Dr. Kurtz at the Berlin-Brandenburg Center for
Regenerative Therapies, Charité Universitätsmedizin Berlin.

Supervisor and reviewer: Prof. Dr. Andreas Kurtz
Reviewer: Prof. Dr. Robert Tolksdorf

Submitted: 16th October 2012

 II

Abstract

CELDA (Cell: Expression, Localization, Development, Anatomy) is an ontology,
which comprehensively represents cells in the whole body. It serves as the main
data source for CellFinder, a web-based data repository on cell types. By linking
information from more than 15 other ontologies its structure gets complex and
finding the desired data as easy as possible is vital. While a text-based search
works best when the target is known by name, it fails when the user lacks this
knowledge. In the latter case a tool is needed that requires only little or common
knowledge.

The Semantic Body Browsers aims to provide an intuitive graphical way for
exploring an organism’s body by means of annotated vector graphics. A simple
mouse click highlights the target area and makes it possible to retrieve related
information from CELDA or browse further along the three dimensions: resolution,
development and species. The Semantic Body Browser is part of the CellFinder
project and will is thereby integrated into the principal application.

The tool is implemented in JavaScript, HTML and CSS together with an API,
written in PHP, and a MySQL database. The standalone version is available at
http://sbb.cellfinder.org and the integrated tool can be found at
http://cellfinder.org/browse.

 III

Acknowledgement

First of all, I would like to express my deep gratefulness to Prof. Dr. Kurtz for giving
me the ability to write my bachelor thesis at his research group and supervising me.
I would also like to thank Prof. Dr. Tolksdorf for reviewing my thesis.

Furthermore, I am grateful for the support of the whole research group as well
as the CellFinder team. I would like to give special thanks to Dr. Stachelscheid for
the many valuable discussions and advises. I am also pleased to give thanks to Ms.
Seltmann, who greatly helped me with the ontology.

Additionally, I am deeply grateful for my family who supported me in every
way they could.

This thesis would not have been possible without the substantial help of all
those people. Thank you!

Fritz Lekschas, Oct. 2012

 IV

CONTENTS
1	
 Introduction .. 1	

1.1	
 Thesis .. 1	

1.2	
 Motivation ... 1	

1.3	
 Scope .. 2	

2	
 Background Information .. 3	

2.1	
 CellFinder – A Stem Cell Repository ... 3	

2.1.1	
 CELDA Ontology ... 3	

2.1.2	
 CellFinder – The Web Application ... 4	

2.2	
 The Kidney .. 4	

2.2.1	
 The Anatomy ... 4	

2.2.2	
 Development of the Nephron .. 5	

2.3	
 Vector Graphics .. 7	

2.3.1	
 Vector vs. Raster Graphics ... 7	

2.3.2	
 Scalable Vector Graphics .. 8	

2.4	
 A JavaScript Web Application ... 9	

2.4.1	
 JavaScript ... 10	

2.4.2	
 Document Object Model ... 10	

2.4.3	
 AJAX .. 11	

2.4.4	
 Frameworks, Libraries & Tools .. 12	

2.4.4.1	
 AngularJS ... 13	

2.4.4.1.1	
 The AngularJS Seed ... 17	

2.4.4.2	
 jQuery ... 18	

2.4.4.3	
 Raphaël .. 18	

2.4.4.4	
 Hammer.js .. 18	

2.4.4.5	
 Grunt ... 18	

2.4.4.6	
 Slim ... 20	

3	
 Application Design ... 21	

3.1	
 Client-Side .. 21	

3.2	
 Server-Side ... 22	

3.2.1	
 Database ... 22	

3.2.2	
 API ... 24	

 V

4	
 Results ... 25	

4.1	
 A Walkthrough .. 25	

4.2	
 Implementation ... 29	

4.2.1	
 SVG to JSON Converter .. 29	

4.2.2	
 Database ... 32	

4.2.3	
 API ... 34	

4.2.4	
 The JavaScript Application ... 35	

4.2.4.1	
 Bootstrapping ... 35	

4.2.4.2	
 Controllers .. 36	

4.2.4.3	
 Services .. 38	

4.2.4.4	
 Directives .. 39	

4.2.4.5	
 Templates ... 43	

4.2.5	
 Grunt ... 44	

4.3	
 Technical Requirements .. 45	

5	
 Discussion ... 47	

5.1	
 Benefits ... 47	

5.2	
 Semantics ... 48	

5.3	
 Differences Between Species .. 50	

5.4	
 Monochrome Illustrations .. 50	

6	
 Outlook .. 51	

7	
 Reference .. 52	

List of Abbreviations ... A	

List of Figures .. B	

List of Listings ... C	

List of Tables ... D	

 1

1 Introduction
1.1 Thesis	

The bachelor thesis goal is the development of a web-based tool for graphically
browsing the anatomy of the body of different species. The tool is part of the
CellFinder project1 and therefore maps units - regions of interest in an illustration -
to the novel Cell: Expression, Localization, Development, Anatomy (CELDA)
ontology which is the main data source of CellFinder.

The tool is implemented as a stand-alone web application2 for the sake of the
thesis first and integrated into the CellFinder platform3. As a proof of principle the
graphical browsing is implemented for the human and murine kidney but includes
the final set of features.

1.2 Motivation	

CellFinder is a web-based data repository on cell types. It aims at being capable of
handling, processing and integrating multi domain data. CELDA acts as the data
structure, integrating eight different ontologies and eleven bridges while extending
them. This leads to a huge and complex data source. CellFinder as a platform for
cell types aims at researchers in various fields of biology and medicine and therefore
it needs to be ensured that the information can be easily found and retrieved by
users.

One way is the classical text based search, which works fine when the user
knows exactly by name what he is looking for. Unfortunately, the approach fails
when the user lacks this knowledge. Thus a tool is needed which requires only
common knowledge about the domain to browse the data repository. The idea is to
provide a graphical tool to browse an organism’s body and retrieve insight
information along the way. People interested or working in the field of research on

1 http://cellfinder.org
2 http://sbb.cellfinder.org
3 http://cellfinder.org/browse

 2

cells are familiar with the basic anatomy of the organs they are working with.
Additionally, a tool that generally works like any common geographical map
application4 permits the user to explore new things quickly and intuitively.

As one of the working group’s focus is on research in nephrology, the organ
of choice is the kidney. The direct connection to the nephrology department of the
Charité to the working group, led to the conclusion to primary concentrate on
human. Apart from that, most of the current research concerning the development
of the kidney has been realized in mouse. Additionally, CELDA integrates the Mouse
Adult Gross Anatomy (MA) ontology, which holds comprehensive data on the mouse
anatomy and development. Therefore, it has been decided to integrate mouse as
the second species.

1.3 Scope	

The Semantic Body Browser within the scope of the bachelor thesis is about the
implementation of a web application for graphically browsing an organism’s body in
respect to CELDA. First of all this involved the development of a client-side web
application written in JavaScript. Second, a server-side Application Programming
Interface (API) is needed to handle the communication with a database and the
CELDA ontology. Furthermore, illustrations had to be annotated and mapped to
CELDA and a parser for automatic converting of Scalable Vector Graphics (SVG) to
a JavaScript compatible file format had to be implemented.

4 http://en.wikipedia.org/wiki/Comparison_of_web_map_services

 3

2 Background Information
The Semantic Body Browser is part of the CellFinder project and should enhance
the platform by providing an intuitive, graphical way of browsing CELDA. The
following passages give an overview about the CellFinder project and the CELDA
ontology as well as the anatomy and development of the kidney. Furthermore,
technical background information in respect to the application is given.

2.1 CellFinder	
 –	
 A	
 Stem	
 Cell	
 Repository	

The CellFinder project aims at providing a comprehensive data repository on cell
types [CellFinder, 2012]. The platform shall hold all types of data, which represents
biological characteristics of cells grown in vitro as well as in vivo. The goal is to
establish long-term storage and interoperability. In addition, CellFinder will serve
tools to analyse and interact with cell related data.

To achieve these goals the CellFinder project can be divided into the four
main work packages: text mining, protein and gene expression analysis, ontology
and web application. A closer look is provided on the latter two fields as the
Semantic Body Browser directly interacts with the ontology and is integrated into
the web application.

2.1.1 CELDA	
 Ontology	

The main data structure behind CellFinder is the Cell: Expression, Localization,
Development, Anatomy (CELDA) ontology. To successfully assimilate diverse types
of data related to cells, CELDA integrates and extends eight existing ontologies as
well as eleven bridges [Werner, 2012].

CELDA utilizes the BioTop ontology as a top-level structure and bridge to
map domain-specific ontologies. To allow fast querying, the information of CELDA is
additionally stored in a database and made available via an API. This approach
permits to easily extent cell types with further data like gene or protein expression
values or pictures that are not part of the ontology itself. Besides that, an API
facilitates the development of tools for CellFinder using CELDA as a resource of
information.

 4

2.1.2 CellFinder	
 –	
 The	
 Web	
 Application	

The main entry point for retrieving and interacting with data on cell types is the web
application. This is where the user can search for anything related to cells, e.g.
organs, tissues, developmental processes, genes and cells themselves. The
browsing section is an alternative way to retrieve and display the data. A
developmental tree for cell types is currently provided but should be extended by
the Semantic Body Browser. Analysis tools allow the comparison of cells based on
their gene and protein expressions. It is furthermore planned to permit the user to
edit annotated data that is derived from text mining.

The application itself is written in PHP. The ontology and its relating data are
queried through an API whereas everything else is directly retrieved from a MySQL
database.

2.2 The	
 Kidney	

The kidney is an essential organ for the blood filtration. It is commonly ascribed to
the urinary system because of its ability to filter waste, which is diverted to the
urinary bladder. Furthermore the kidney plays an important role in maintaining the
bloods homeostasis by regulating electrolytes, the acid-base balance as well as the
blood pressure, which depends on the water-salt equilibrium [Wikipedia, 2012].

The next two passages describe the kidney’s anatomy and the development
of the nephron in detail.

2.2.1 The	
 Anatomy	

The two kidneys of mouse and human share a high anatomical similarity. They are
bean shaped and have a concave surface called the renal hilum (Figure 1: 1), which
connects the kidneys with the rest of the body. The renal artery (Figure 1: 2) and vein
(Figure 1: 3) as well as the ureter (Figure 1: 4) enter the organ at this point. All three
structures split up into several branches as they enter the kidney. The ureter for
example migrates to the renal pelvis (Figure 1: 5), the main collecting tube that
arises from merging the major calyces (Figure 1: 6). The major calyx itself originates
from the minor calyx (Figure 1: 7). The kidney’s parenchyma is the set of
approximately seven to nine repetitive shapes, called the renal lobes (Figure 1: 8)

 5

[Manski, 2012]. Each renal lobe consists of the outer renal cortex (Figure 1: 9) and a
portion of the inner medulla called the renal pyramids (Figure 1: 10). The renal lobes
in turn are the sum of a repetitive structure called nephron (Figure 1: 11).

The nephron is the functional unit of the kidneys. It regulates the bloods
volume, pressure and electrolytes and moreover eliminates its wastes. Each
nephron is composed of a blood filtering complex, the renal corpuscle (Figure 1: 12),
and a tubular system (Figure 1: 13) in which the resorption and secretion takes
place. The renal corpuscle consists of the glomerulus (Figure 1: 14) - a network of
capillaries - and the glomerular capsule that is also known as Bowman's capsule
(Figure 1: 15). The most important and prominent cell type involved in the blood
filtering is the podocyte. The podocytes entwine the glomerulus and theirs
numerous foot processes (Figure 1: 16) form slit diaphragms (Figure 1: 17) between
each other, which perform the blood filtration. The renal capsule encloses the
glomerulus and marks the start of the tubular system. This system is formed of
several segments starting with the proximal tubule (Figure 1: 18), which is followed
by the thin loop of Henle (Figure 1: 19), the distal tubule (Figure 1: 20) and finally the
collecting duct (Figure 1: 21). The resorption and secretion of molecules mainly
occurs at peritubular capillaries (Figure 1: 22) twining around the tubules.

Figure 1: Anatomy of the kidney in human and mouse
Resolution increases in direction of the arrow. Each new level is highlighted in orange in the
previous illustration.

2.2.2 Development	
 of	
 the	
 Nephron	

The development of the kidney proceeds through three stages: the pronephros,
mesonephros and metanephros. Two distinct tissues, the ureteric bud - derived

 6

from the mesonephros - and the metanephric mesenchyme finally develop into the
mature kidney [Pavenstädt, 2003][Davidson, 2009].

The pretubular aggregation of metanephric mesenchymal stem cells at the
cap mesenchyme marks the beginning of a nephron’s development. The first
developmental stage - the renal vesicle - is a clustering of metanephric
mesenchymal stem cells that develop into epithelial cells at the ureteric bud. The
epithelial cells organize a body, which looks like a bean and is often referred to the
comma-shaped body. This body already features a lumen, which will later make up
the Bowman’s space. As this body keeps growing its shape transforms into a more
tubular system. The second developmental stage, called s-shaped body,
distinguishes in two ways. First, the s-shaped body clearly shows the development
of the tubular system and second, the proximal cleft is being invaded by angioblasts
and precursor mesangial cells. While the s-shaped body keeps growing and the
angioblasts and precursor mesangial cells mature, a first network of blood vessels
can be seen. Furthermore does the lower limb transform into the glomerular capsule
and an immature renal corpuscle can be identified. At this point the structure is
recognized as the capillary loop nephron, the third developmental stage of the
nephron. The final step invokes further maturing and elongation of the tubular
system, which connects with the collecting duct system.

The developmental processes begin with the 20th Theiler stage in mouse
[Harding, 2011] [McMahon, 2008], respectively 17th Carnegie stage in general
according to Haudry et al. (Figure 2) [Haudry, 2008]. The pretubular aggregate, renal
vesicle and comma-shaped body develop within approximately one day. The s-
shaped body can be seen from the 21st Theiler / 18th Carnegie stage on and
develops to the capillary loop nephron around the 22nd Theiler / 19th Carnegie stage.
As a normal mature kidney consists of roughly 800.000 – 1.5 million nephrons
[Guyton, 2006], the development does not start simultaneously and thus the whole

process continues until the 23rd Carnegie stage.

 7

Figure 2: Developmental stages of the nephron in human and mouse

The timeline does only highlight the earliest beginnings of a developmental stage as the
process is dynamic and the timeframe is rather flexible. The start and end point are fixed,
though.

2.3 Vector	
 Graphics	

Vector graphics are a type of computer graphics that exactly describe objects with
the use of basic geometric forms like a line, circle, rectangle or path. This differs
from raster graphics, which are based on a grid of colours called pixels. The biggest
advantage of vector graphics is the lossless scalability and with the establishment of
the XML based Scalable Vector Graphics (SVG) it is even possible to directly
manipulate vector graphics on the web.

2.3.1 Vector	
 vs.	
 Raster	
 Graphics	

Vector graphics, as the name indicates, are made up of vectors. These vectors
define lines and curves at certain locations and thus describe an object’s
geometrical characteristics mathematically. Besides the outlines of a shape, other
information can be defined such as the filling colour or a stroke. As a consequence,
vector graphics need to be rendered before they can be displayed but the rendering
process is resolution independent (Figure 3). Thus vector graphics are mostly used
for fonts, glyphs and abstracted illustrations. On the other hand raster graphics do
not describe any objects, they only assign a location and a colour to each pixel. As
they represent the nature of computer displays, which are raster devices, they do

 8

produce the same visual representation on any machine. Apart from that they are
preferable over vector graphics when it is needed to display a large amount of
details like in photographies. Vector graphics are not capable of describing such a
high number of information efficiently and thus would dramatically increase in their
file size and look unrealistic.

Figure 3: Vector vs. raster graphics

The vector graphic (left side) remains sharp at any resolution whereas the raster graphic
(right side) cannot be magnified without loosing clarity.

2.3.2 Scalable	
 Vector	
 Graphics	

Scalable Vector Graphics (SVG) is a specification for two-dimensional vector
graphics defined by the World Wide Web Consortium (W3C) [W3C, 2011]. It is based
on the Extensible Markup Language (XML) and can be used in all modern web
browsers, even though it should be noted that none of the current browsers support
all features [Schiller, 2011]. SVG are plain text files and can thus be edited with any
text editor. This provides the ability, amongst others, to script and compress the
image. SVG follows a strict structure due to the fact that it is based on XML (Listing
1).

 9

1. <?xml version="1.0" encoding="UTF-8"?>

2. <svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 version="1.1" baseProfile="full"

 width="700px" height="400px" viewBox="0 0 700 400">

3. <rect x="100" y="100" width="500" height="200" fill="#fff" stroke="#000" stroke-
width="20"/>

4. <circle cx="300" cy="80" r="50" stroke="#000" fill="#0f0" stroke-width="2"/>

5. <ellipse cx="0" cy="0" rx="100" ry="50" fill="#ff0" />

6. <path d="M150 0 L75 200 L225 200 Z" fill="#00f" stroke="#000" stroke-width="5" />

7. </svg>

Listing 1: SVG example

The first line defines which XML version and text encoding is used. The second line sets a
container with its dimensions as well as the view box. Lines three to six are examples,
illustrating the basic geometric shapes SVG is capable of. These four elements also
represent all relevant elements in terms of the Semantic Body Browser.

2.4 A	
 JavaScript	
 Web	
 Application	

JavaScript (JS) has been invented by Netscape to compensate the static nature of
HTML. Its goal was to make websites more interactive and has long been used to
solely enhance the feeling of a website’s functionalities. The rise of Asynchronous
JavaScript and XML (AJAX) led to the development of several libraries, which
streamline the behaviour in different browsers. This opened up a way to use
JavaScript for more complex tasks. With less effort it was possible to make a
website behave more like a desktop application.

A JavaScript web application combines several technologies apart from
JavaScript itself. Often, HTML in association with CSS shapes the look. An API is
usually used to enable the communication between JavaScript on the client-side
and a database on the server-side. All aspects as well as essential frameworks,
libraries and tools are described in the following passages, beginning with the
language JavaScript.

 10

2.4.1 JavaScript	

JavaScript is an object oriented dynamic scripting language. It is often used in the
Web but can also be found in non-browser environments5.

JavaScript has been invented by Brendan Eich, an engineer at Netscape, in
1995 and first released with the Netscape 2. It was former called LiveScript but in an
attempt to benefit from the popular Java language, it had been renamed to
JavaScript. It should be noted that the word “Java” is the strongest similarity
between the two languages. Based on the request of Netscape, JavaScript has
been standardized by the ECMA International and released in 1997 under the new
name ECMAScript. At the point of this writing all modern web browsers support
version 5.1 of ECMAScript. Thus, JavaScript can be seen as an implementation by
Mozilla of the current ECMAScript standard. But for the sake of simplicity, the term
“JavaScript” will be used to represent any implementation of ECMAScript.

JavaScript's first purpose was to enrich websites by providing ways for
dynamic interactions. By standardization of JavaScript it is no longer fixed to the
browser and can theoretically be used in any environment. This still causes
confusion and is one of the main reasons why JavaScript has been entitled as one
of the most misunderstood programming languages [Crockford, 2001].

JavaScript is a prototype-based programming language with first-class
functions [Mozilla 2012]. It can be used with an object-oriented, imperative or
functional design paradigm. Differences between other object-oriented
programming languages are that JavaScript has no classes and uses prototypal
inheritance for reuse of code. It is furthermore worth to note that functions
themselves are only objects, which leads to the ability to make use of first-class
functions.

2.4.2 Document	
 Object	
 Model	

Working with JavaScript that runs in a browser environment implies working with the
Document Object Model (DOM). HTML and XML are markup languages that follow a
strictly hierarchical structure. Manipulation of the structure requires an interface that

5 http://en.wikipedia.org/wiki/JavaScript#Uses_outside_web_pages

 11

defines how to access and traverse elements: the Document Object Model (Figure
4).

The W3C has standardized the DOM in 1998. The current Version is 3,
released in 2004 [W3C, 2012]. But still the implementations of the DOM among
various rendering engines show significant differences [Resig, 2011].

Figure 4: HTML and DOM

On the left is an HTML document and on the right the related DOM tree. The dark
“document” node is the root and does not represent any HTML element. The DOM
specification moreover describes a set of methods for querying, traversing and manipulating
the DOM.

2.4.3 AJAX	

AJAX - Asynchronous JavaScript and XML - describes a concept for asynchronous
communication between the browser and a server. One technique behind, which is
called XMLHttpRequest, accomplishes to execute HTTP requests on the client-side
without having to reload the actual page. This means that content from another
resource can seamlessly be loaded behind the scenes and changed on the fly
without interfering the display of the current page.

The rise of AJAX began in 2005 [Gerett, 2005] but it wasn't a novel concept. It
is more a collection of several technologies combined under a new name (Figure 5).
Even though the technologies exist since 1998, their diverse implementation in

 12

different browsers holds back the adaption. This changed with the emergence of
several frameworks and libraries that streamline the usage of asynchronous server
requests and DOM manipulation. The most popular library nowadays is jQuery
[W3Techs, 2012].

It should be noted that JavaScript technically cannot interact with any files or
databases directly. Talking about manipulations solely means manipulations of the
current DOM. DOM manipulation are of temporal nature, thus they are lost after a
page reload. This can only be avoided by calling other technologies via the
XMLHttpRequest.

Figure 5: AJAX

JavaScript is the key of AJAX. With it, one can asynchronously manipulate the DOM and call
XMLHttpRequests. All technologies together enhance the interaction with a website by
avoiding page reloads.

2.4.4 Frameworks,	
 Libraries	
 &	
 Tools	

JavaScript is a powerful language and has proven to be capable of more than just
an enhancement for HTML. However, writing application in plain JavaScript comes

 13

with a huge drawback. As discussed in the previous chapter, AJAX technologies in
their nowadays use are not fully implemented in respect to the standardization and
vary among different engines in many ways. This causes the need for so-called
boilerplate code to streamline the behaviour and output of functions. By relying on a
number of well developed frameworks and libraries this repetitive work can be
saved.

The Semantic Body Browser relies on one framework and three libraries
which all specialized on serving different features. The frameworks and libraries
themselves and their purpose are introduced in the following passages.

2.4.4.1 AngularJS

AngularJS6 is an open-source JavaScript framework. It implements the Model-View-
Controller (MVC) design pattern, which helps to keep code clean. Additionally it
extends HTML to make it capable of dynamic content.

The MVC design pattern describes a programming paradigm, which
separates code into three parts: models, views and controllers (Figure 6). A clear
structure and the separation of different sections make it easier to maintain, extend
and debug code. The model hereby describes the code that interacts with and
stores the data. A view is the representation of the data on the screen. Finally the
controller is responsible for the application’s logic; it processes inputs, delegates’
tasks and prepares the output.

6 http://angularjs.org

 14

Figure 6: Original MVC design pattern

The original Model-View-Controller pattern describes by T. Reenskaug in 1979 [Reenskaug,
1979].

In AngularJS the model is any JavaScript object that holds some kind of data. The
view is normal HTML and CSS, extended with AngularJS specific attributes and
elements. The controller is represented as a JavaScript function.
AngularJS separates code even further in directives, services and filters, to ease the
maintainability. Modern JavaScript applications make significant use of AJAX and
thus invoke a number of asynchronous tasks like DOM manipulations and
XMLHttpRequests. These can be difficult to test and may be used several times
throughout the application. AngularJS therefore advises to separate all kinds of
DOM transformation in directives and define services for common tasks. Filters are
intended to work similar as UNIX filters, thus they should deal with data
transformation.

 15

Figure 7: MVC implementation of AngularJS

In AngularJS the user interacts with the view, which is composed of a template and the
model. The view knows about the model and the controller and can communicate with both.
Services can be injected into controllers and directives. Directives and filters are used to
enhance the static nature of HTML.

One of the biggest advantages of AngularJS is hereby the elimination of boilerplates.
This results in much shorter and cleaner source code (Listing 2).

1. <!doctype html>

2. <html ng-app>

3. <head>

4. <script src="js/angular.min.js"></script>

5. <script type="text/javascript">

6. function Ctrl($scope) {

7. $scope.names = ["Peter", "Mayer", "Dirk"]

8. $scope.add = function () {

9. if (this.name) this.names.push(this.name)

 16

10. }

11. }

12. </script>

13. </head>

14. <body>

15. <div ng-controller="Ctrl">

16. <form ng-submit="add()">

17. <input ng-model="name"><input type="submit" value="Add">

18. </form>

19.

20. <li ng-repeat="name in names">{{ name }}

21.

22. </div>

23. </body>

24. </html>

Listing 2: AngularJS: example application

At first the browser loads the HTML and parses the DOM. Then the AngularJS source code
is loaded (line 4). After AngularJS is ready the application will be bootstrapped in the scope
of the ng-app directive (line 2). This binds JavaScript to DOM elements.
Within the scope of the Ctrl controller – highlighted in orange – it is possible to access its
models and functions. The models – highlighted in blue – can hereby be created before (line
7) or during the runtime (line 17). When a user enters a new name, the underlying model will
automatically be updated. Submitting the form pushes the current value of the model on the
array “names”. Because AngularJS uses two-way data binding, changes on any site,
JavaScript or HTML, will be reflected immediately and thus the list of names (line 20) will be
recompiled.
AngularJS defines any object that is reachable within a scope as a model. Therefore it can
be predefined like “names” (line 7) or generated during the runtime like the two models

names in line 17 and 20. The example thus has three models in two different scopes.
The controller handles the logic on a certain scope and is represented as a JavaScript
function (lines 6 – 11). A controller thus defines the initial state and behaviour of a scope. In
the example, the controller initialises “names” (line 7), which can be modified by the “add”
method (lines 8 – 10). A controller should never manipulate the DOM directly which is
separated into directives.
One of the build in directives is ng-repeat which loops over an array and renders HTML for
every element. A directive usually has its own scope to avoid conflicts. The example
demonstrates the existence of two different scopes by using the name “name” for the
models twice. Even though both models have the same name they represent different data

 17

as they belong to distinct scopes. The model in line 17 belongs to the Ctrl controller and the
other model in line 20 is part of the ng-repeat directive.
The HTML, that follows after the application is initialized (line 2), reflects the template.
AngularJS adds more functionality to the HTML by custom directives (ng-repeat line 20),
attributes (line 15: “ng-controller”) and expression. The example illustrates one expression:
“{{ name }}” (line 20). These expressions can be interpreted as JavaScript expression with
limitation in their feature set. In this case the value of each name in the list of names is bond
to the view.

2.4.4.1.1 The AngularJS Seed

AngularJS provides a template web application which serve as a blueprint when
starting a new project. The AngularJS Seed7 provides a basic skeleton, which
invokes the standard AngularJS framework files and wires them together. This gives
an instant start for the development and a clear structure to follow (Table 1).

Method Description

./app Application root

 ./css Contains all Cascading Style Sheets

 ./img Contains images

 ./index.html Main template

 ./js Contains JS application files

 ../app.js Contains general configuration of the
application

 ../controllers.js Contains the applications controller

 ../directives.js Contains the applications directives

 ../filters.js Contains the applications filters

 ../services.js Contains the applications services

 ./lib Contains JS libraries

 ./angular Contains AngularJS specific libraries

 ./partials Contains templates

Table 1: AngularJS Seed: file structure

7 https://github.com/angular/angular-seed

 18

2.4.4.2 jQuery

DOM manipulation is an essential tool for every JavaScript application. The
asynchronous character requires JavaScript to load content dynamically and then
update the DOM to visually reflect the changes. jQuery8 is an open-source
JavaScript library that provides tools for easy, cross-browser manipulation and
traversing the DOM as well as XMLHttpRequests. It works perfectly together with
AngularJS as AngularJS already provides a small subset of jQuery.

2.4.4.3 Raphaël

Raphaël9 is an open-source JavaScript library that aims at simplifying and
streamlining the work with vector graphics on the web. It implements SVG and uses
the Vector Markup Language (VML) as a fallback for Internet Explorers older than
version 9. This means that the elements of the vector graphics are not only
displayed but also registered as DOM elements, which make it possible to
manipulate them with JavaScript.

2.4.4.4 Hammer.js

jQuery and AngularJS do only support mouse and keyboard events. Hammer.js10 is
a lightweight JavaScript library that implements a rich set of touch events. With the
help of Hammer.js it is possible to enable the Semantic Body Browser for the usage
on a number of touch devices, like smartphones and tablets.

2.4.4.5 Grunt

When working with JavaScript one comes across a number of repetitive tasks. This
often includes concatenating, minifying and testing the code. Performing these
tasks manually can take a lot of time. Grunt11 is an open-source command line tool
that can handle common tasks including the one named before.

8 http://jquery.com
9 http://raphaeljs.com
10 http://eightmedia.github.com/hammer.js/
11 http://gruntjs.com

 19

Grunt is written in JavaScript and needs NodeJS12 - a JavaScript server
environment - to be installed. It is configured by a single file, called grunt.js or simply
gruntfile, in which the tasks that should be performed are defined (Listing 3).

1. module.exports = function(grunt) {

2. grunt.initConfig({

3. concat: {

4. dist: {

5. src: ['src/a.js', 'src/b.js'],

6. dest: 'src/all.js'

7. }

8. },

9. lint: {

10. files: ['lib/*.js']

11. },

12. min: {

13. dist: {

14. src: ['src/all.js', 'lib/*.js'],

15. dest: 'src/min.js'

16. }

17. },

18. qunit: {…},

19. server: {…},

20. test: {…},

21. watch: {…}

22. });

23. grunt.registerTask('default', 'lint min');

24. }

Listing 3: Gruntfile example

Grunt loads the module (line 1) and looks for the project configurations (lines 2 – 22). If no
tasks are specified, the default tasks are performed (line 23). An object inside of the
configuration defines a task, like “min” in line 12. Each task has a specific set of attributes
that act as its configuration.

12 http://nodejs.org

 20

2.4.4.6 Slim

Slim13 is a PHP framework for small to medium sized web applications and APIs. Its
goal is to provide a comprehensive set of tools while keeping a small footprint.
Besides other use cases, Slim makes it possible to set up a RESTful -
Representational State Transfer - web service, respectively API. Such an API is
stateless which means that every query is treated independently and is not
influenced by former actions. This implies that a certain URL, following a defined
pattern, represents all of a query’s parameters (Figure 10).

13 http://www.slimframework.com

 21

3 Application Design
The Semantic Body Browser follows the general structure of a web application and
separates the actual application from the data. The JavaScript application operates
on the client side and communicates with a database via an API. Both, the API and
the database are located on the server side (Figure 8).

The following passages describe both sides in detail and explain how they
communicate and work together.

Figure 8: System architecture

3.1 Client-­‐Side	

Main part of the Semantic Body Browser is the JavaScript application, operating on
the client-side. It processes the user inputs, loads the required illustrations and data
and renders the views. The JavaScript application is build upon an AngularJS Seed,
which handles all the business logic. Additionally, the three libraries: jQuery, Raphaël
and Hammer.js are integrated. JQuery is mainly used for DOM manipulation.
Raphaël adds functionalities for working with SVG, which is needed to display and
interact with the illustrations. Hammer.js enhances the application with touch
gestures to make it able to response on touch devices, like smartphones and
tablets.

For the Semantic Body Browser only two controllers are needed. One
handles the displaying and manipulation of the illustration and another one simply

 22

provides texts with background information. Because AngularJS separates the
business logic and the DOM manipulation a couple of smaller directives are needed
as well as a more complex one for dealing with SVG. Furthermore, services for
retrieving the illustrations and querying the API are needed. Finally, two views
display the text and one the illustrations.

3.2 Server-­‐Side	

To follow the best practice of separating code from content, a MySQL14 database
server is responsible for the data storage. Because JavaScript itself has no
possibility to directly query the server an API, build with Slim, is used to establish
the communication between the two parties.

3.2.1 Database	

The database needs to be able to hold information about the three dimensions of
browsing: resolution, development and species. This is achieved by assigning each
view, which is representing an illustration, a certain level of resolution, a
developmental stage and a species. Each view contains a number of units. A unit
can be interpreted as an area of interest within an illustration, like an organ, a tissue
or a cell, which the user can interact with. Furthermore, the database design
represents definitions, synonyms and pictures (Figure 9).

A view is identified by a unique name, which can possibly be anything. It
furthermore consists of a unique combination of a developmental stage, a species
and a level of resolution. These values are linked as foreign keys from the related
tables to ensure integrity. Each view is mapped to an ontological term via a Uniform
Resource Identifier (URI). If the view’s name differs from the related illustration’s
name, a custom image source can be specified. Finally, each unit can have a
custom title and link to a certain prefix. The prefix tables serves as a helper to
reduce the length of unit names and makes their sorting more useful. For example
every non-unique region or cell within the kidney could be prefixed with “renal” even

14 http://www.mysql.com

 23

though this prefix does only make sense when the region or cell is referenced from
another scope.

A developmental stage is composed of a name, a precursor stage as well as
a successor stage. The latter two are self-referencing keys to other developmental
stages from the same table and used to calculate the order. Species have an ID,
which matches their colloquial name and their Latin counterpart. A name, as well as
their parent describes levels of resolution.

A unit is identified by a name and the view in which it can be found. Therefore
the “view” attribute act as a foreign key. Each unit is mapped to a certain term in
CELDA and can have a custom title and prefix. The possibility to zoom into a unit is
processed automatically by checking whether a view with the units name does exist,
keeping in mind the species and developmental stage. Apart from that a custom
zoom can be specified. This is especially useful when the next level of resolution
consists of a set of units.

The picture, synonym and definition tables link additional data to a certain
URI. Their structure is based on their counterparts in CellFinder to allow quick and
easy migration.

Figure 9: Database design

The tables highlighted in blue describe the browsing. The other three tables highlighted in
orange hold supplementary information about the view and the units.

+/- Unsigned number N Not null

A Auto increment P Primary key

F Foreign key U Unique

 24

3.2.2 API	

The API is a single file application that bridges queries of the database. Because the
application only allows visual manipulation of certain styles of an illustration, there is
no need for data manipulation of the database. Thus the API needs functions of
retrieving data only. As the client-side application is written in JavaScript the
response format of choice is JavaScript Object Notation (JSON).

The API needs to track a number of different Uniform Resource Locator (URL)
patterns to retrieve information that is being stored in the database (Table 2).
Furthermore does the API provide wrapper methods, which themselves call a set of
other methods, to reduce the amount of HTTP requests needed to get the desired
data.

Method URL Pattern Description

getAll /<VIEW> Wrapper method that queries and
combines: getView, getUnits,
getDefinition, getSynonyms,
getPictures and getUnitData.

getView /views/<NAME> Gets data related to a view.

getUnits /units/<VIEW> Gets units for a view and checks, which
are zoomable.

getUnitData /data/<VIEW> Gets definitions and synonyms for all
units within a certain view.

getSynonyms /synonyms/<URI> Gets synonyms of a given URI.

getPictures /pictures/<URI> Gets pictures of a given URI.

getDefinitions /definitions/<URI> Gets definitions of a given URI.

findSimilarViews /search/<LEVEL> Searches for similar views at different
developmental stages or species while
holding the same level of resolution.

findZoomViews /search/<STAGE>/<SPECIES> Searches for views that can be zoomed
in and parent views.

findView /search/<LEVEL>/<STAGE>/<SPECIES> Searches for a view with a certain
name.

Table 2: API

The table lists the available methods to retrieve information from the database. Following
the URL patterns, which are relative to the API’s location, triggers the methods. Parameters
– written in uppercase and encapsulated with angle brackets – are strings and mandatory.

 25

4 Results
The Semantic Body Browser is a tool for graphically navigating through an
organism’s body and across species. In the scope of this thesis the exploration of
the human and murine kidney has been implemented on the basis of sixteen
illustrations. Starting at the bodies level, one can zoom all the way in to the
podocyte. It is possible to switch the species at any time and to trace six
developmental stages of the nephron (Figure 2). All illustrations are annotated and
395 interactive units are mapped to the CELDA ontology in total. Along the
development of the application 41 new species-specific terms have been added to
CELDA in order to be able to avoid the use of general terms (Table 3).

The following passages present the results and explain the implementation of
the Semantic Body Browser in detail.

4.1 A	
 Walkthrough	

To better understand the applications features this walkthrough provides
screenshots and explanations of what the user can do with the Semantic Body
Browser.

Starting with the home screen (Figure 10) that is displayed when the website
is visited for the first time, a user is confronted with a short description and the
choice between the two species: human and mouse. To make it as straight forward
as possible the two buttons for the species take up two third of the whole screen
and are emphasized with pictograms for their respective species.

When the user clicks on the human or mouse button, the main view of the
application is loaded. It is basically divided into three sections: the top bar, the area
for the illustration and the sidebar on the right.

 26

Figure 10: Semantic Body Browser: home screen

Top bar
The top bar has three main areas. On the left is the navigation for the application
itself. You can get background information (Figure 11: 1), go back to the home
screen (Figure 11: 2) or save and restore bookmarks (Figure 11: 3). In the middle of
the top bar is the name of the current view displayed (Figure 11: 4). The area on the
right holds navigations for the current view. If available it is possible to change the
resolution (Figure 11: 5), meaning to zoom in or out, to trace developmental stages
(Figure 11: 6) or to switch the species (Figure 11: 7). Furthermore the search input
allows filtering the units of the current view (Figure 11: 8).

Side bar
Information concerning the view can be found in the right side bar. Most important,
the units are listed here (Figure 11: 9). To easily keep track of all units they are
grouped by their first letter, which is indicated on the right. It should be mentioned
that common prefixes for organs are excluded during the grouping process but still
displayed to make sure that the official name is present. Units that are marked with
a small magnifier inform the user that a higher resolution of this unit is available. A
single click on a unit highlights it (Figure 11: 10) and the related region in the

 27

illustration (Figure 11: 11). A double click on a unit zooms the user in, in case it is
available.

Below the units is a section, which holds general information about the
current view (Figure 11: 12). If available a short definition or description is given as
well as common synonyms. This information is derived from the CELDA ontology. In
this respect, the URI is given and links to the related site of the CellFinder
application.

The last available section within this sidebar is the picture panel below
(Figure 11: 13). It is minimized by default but can be opened with a click on its name.
Microscope pictures are provided by Omero15 - an image repository for managing
and analysing microscope pictures. If more than one picture is available the user
can flip through them by clicking on the small arrows. A click in the centre of the
picture opens up the detailed image viewer of Omero that is integrated into the
CellFinder application. It should be noted that this feature is currently only present
for the renal corpuscle, because there are currently only very few microscope
pictures available. But still it has been implemented as a proof of principle.

Illustration
The biggest part of the screen is displaying the illustration (Figure 11: 14). The user
has the possibilities to drag the illustration by pressing the mouse and moving the
cursor. By scrolling inside of the container the illustration gets magnified or shrunk
to a certain extend. Most important, it is possible to interact with the units by simply
clicking on them. The mouse click highlights the target and similar objects of the
same type. Furthermore, a double click on any of the units opens a dialog (Figure
11: 15) that gives a short definition or description as well as the possibility to open
that unit with CellFinder or to zoom into it, if available. Is the double click performed
outside of any unit, the current highlighting will be reset. The illustration’s initial
position and scaling can be recovered by the button in the top right corner of the
illustration panel (Figure 11: 16).

15 http://www.openmicroscopy.org/site/products/omero

 28

Deep Linking
Finally, to make referencing possible the application allows deep linking, which
means linking to a specific state of browsing. Any changes on the screen are
reflected in the URL, even if the back or forth button is used. The path followed by
the root describes the view (Figure 11: 17 “human-adult-podocyte”) and the
currently active unit is given by the search parameter “unit” (Figure 11: 18
“nucleus”).

Figure 11: Semantic Body Browser: podocyte

At the point of this writing the Semantic Body Browser incorporates 15 views for the
human and mouse each. These views branch off into ten different levels of
resolution and five developmental stages (Figure 12).

 29

Figure 12: Browse tree

The blue and orange boxes illustrate the available views. It is possible to switch between the
species at any time. The name for corresponding views in human and mouse are always the
same, thus their names are only displayed on the blue labels.

4.2 Implementation	

The following passages describe the technical implementation of the Semantic Body
Browser in detail, giving code examples and explanations.

4.2.1 SVG	
 to	
 JSON	
 Converter	

Raphaël is used for the illustration and manipulation of SVG. It is capable of drawing
circles, ellipses, rectangles and paths. This is realizes by calling appropriate
functions with a couple of parameters that define the shape. As of Raphaël’s nature
the parameters are simple JavaScript objects.

As a consequence, SVG files need to be converted into JSON. The SVG to
JSON converter is a command-line tool written in Python. It converts either a single
or multiple SVG files into JSON. The tool needs two parameters: the input path and
the output path (Listing 4).

 30

1. svn_to_json.py <PATH_TO_SVG> <OUTPUT>

Listing 4: SVG to JSON converter: prompt

The SVG to JSON converter requires Python to be installed. Moreover, the converter needs
to be executable. If so, the tool can be used as demonstrated in line 1. The two parameters
– written in uppercase and encapsulated in angled brackets – are mandatory. The first
parameter can either point to a single file or a directory. In the latter case all SVG files in the
given directory will be converted.

The conversion is achieved by looping over each tag of the SVG file and checking
whether it is a supported shape or not. If it is supported all relevant attributes of the
shape are stored. Apart from the actual shapes the group memberships are
considered as well and stored in an extra array (Listing 5). Moreover the original
dimensions of the view box are kept too. It is essential for the application to know
which zoom level uses the space most efficient.

1. for i in range(1, len(svg)):

2. tag = re.search('<(\/?)([a-z]+)', svg[i]).groups()

3. id = re.search('id="([a-zA-Z0-9_]+?)(_[0-9]_)??"', svg[i])

4. id = id.groups()[0].replace('_', '-') if id else False

5. attrs = re.findall('([a-z-]+)="(\S+)"', svg[i])

6. if len(group) and len(tag[0]):

7. if tag[1] == raphaelGroup:

8. group.pop()

9. else:

10. if tag[1] in raphaelElems:

11. data['elements'].append({ 'type': tag[1] })

12. for attr in attrs:

13. if attr[0] in raphaelAttrs:

14. data['elements'][-1][attr[0]] = attr[1]

15. if id:

16. data['elements'][-1]['id'] = id

17. if group:

18. data['groups'][group[-1]].append(len(data['elements']) - 1)

19. elif tag[1] == raphaelGroup:

20. if id:

21. if len(group):

22. data['groups'][group[-1]].append(id)

 31

23. group.append(id)

24. data['groups'][id] = []

Listing 5: SVG to JSON converter: algorithm extract

The listing shows the main algorithm of the SVG to JSON converter. The script loops over
each line of the SVG file and checks whether it contains a valid element or a group. If so the
element, respective the group, is stored in an object. Lines 2 – 5 extracts the elements
attributes. Next, the algorithm looks for closing group elements (lines 6 – 9). If a supported
element is found (line 10), it is stored (line 11) together with its attributes (lines 12 – 16) and
added to the active group if possible (lines 17 – 18). Lines 19 – 24 watch for opening group
elements.

The JSON output contains three objects: elements, groups and viewBox. The object
unit is a list of all shapes that makes up the illustration. Groups itself is an
associative array which assigns each group a list of shapes or groups. Finally the
viewBox simple contains information about the dimensions of the illustration (Listing
6).

1. {

2. "elements": [

3. {

4. "height": "200",

5. "width": "500",

6. "stroke": "#000",

7. "y": "100",

8. "x": "100",

9. "stroke-width": "20",

10. "type": "rect",

11. "fill": "#fff"

12. },

13. …

14.],

15. "viewBox": {

16. "width": 700,

17. "height": 400

18. },

19. "groups": {}

20. }

 32

Listing 6: SVG to JSON converter: output

The listing shows an extract of the output of the example SVG from listing 1. The rectangle
is now stored in JSON notation and can be used by Raphaël.

4.2.2 Database	

The application incorporates 30 views containing 395 units in total. Equally browsing
the human and mouse is possible along ten different levels of resolution and five
developmental stages (Figure 16). To ensure that all units are mapped to CELDA
new terms have to be created that were either missing in human or mouse (Table 3).
The 23 Carnegie stages are used to classify different developmental stages. As their
resolution is too low for describing the right order of the first three developmental
stages of the nephron, the 17th Carnegie stage has been subdivided. It should be
noted that the Semantic Body Browser uses the Carnegie stages only, as the
system provides a general classification of the developmental chronology of
vertebrate embryos. Species-specific developmental stages can be translated with
the conversion table of 4DXpress16 [Haudry, 2012.]

Apart from that, the database does already contain 9 views and 102 units for
the liver, gallbladder and generic blood vessels, which are likely to be integrated in a
next step.

Label Species URI

pretubular aggregate general CELDA_000001468

human CELDA_000001474

interlobar artery general CELDA_000001462

human CELDA_000001463

mouse CELDA_000001464

interlobar renal vene general CELDA_000001422

human CELDA_000001428

mouse CELDA_000001429

mucosal fold general CELDA_000001438

human CELDA_000001439

mouse CELDA_000001440

16 http://4dx.embl.de/4DXpress/reg/all/prepareSearch/mapping/stage.do

 33

perivascular fibrous capsule general CELDA_000001442

mouse CELDA_000001442

nephrogenic interstitium general CELDA_000001427

human CELDA_000001431

primary process general CELDA_000001443

proximal cleft general CELDA_000001423

human CELDA_000001424

mouse CELDA_000001426

distal cleft general CELDA_000001444

human CELDA_000001445

mouse CELDA_000001446

ureteric trunk general CELDA_000001435

human CELDA_000001436

mouse CELDA_000001437

ureteral lumen general CELDA_000001447

mouse CELDA_000001448

lumen of distal tubule general CELDA_000001449

human CELDA_000001450

mouse CELDA_000001451

lumen of proximal tubule general CELDA_000001454

human CELDA_000001455

mouse CELDA_000001456

renal lobe general CELDA_000001452

mouse CELDA_000001453

visceral layer of renal corpuscle general CELDA_000001457

human CELDA_000001458

mouse CELDA_000001459

longitudinal muscle general CELDA_000001465

human CELDA_000001466

mouse CELDA_000001467

Table 3: Novel ontology terms

Over the course of developing the Semantic Body Browser, 41 new ontology terms have
been created to ensure that all units are properly annotated.

 34

4.2.3 API	

The API is build with the PHP framework Slim. The application itself consists of one
file only, the index.php. The deployment of the data contained in the database
requires twelve methods (Table 2). Because the Semantic Body Browser does not
need to change information during the runtime, all methods solely retrieve
information from the database. In Slim a method needs to register as a “get”
methods to listens for a particular input. The input is provided in form of a URL,
which follows a certain pattern (Figure 13).

Figure 13: RESTful API

The Figure illustrates the information flow and implementation of the getView method (Table
1). The Structured Query Language (SQL) query is composed of the two last parameters of
the URL. The first keyword “views” – highlighted in blue – defines which table is queried and
the second keyword “human-adult-kidney” binds to the name. The API processes and
sends this query to the database. The response is then printed in JSON.

Querying of the database is realized with prepared statements. A prepared
statement’s characteristic is that the statement is evaluated by the database first
and then binds certain values to it (Listing 7). This avoids security risks by SQL
injections [PHP, 2012]. The structure of all methods is similar. First of all, the SQL
statement is defined. Encapsulated in a try and catch block, the API then
establishes a connection to the database server. After that the SQL statement is
transmitted to get prepared. And just after that the given parameters are bond and

 35

the query is executed. The results are either returned to the parent method or
printed on the screen. In both ways the results are first encoded into JSON to make
them accessible for the JavaScript application.

1. function getView($name, $ajax = TRUE) {

2. $sql = "SELECT * FROM view WHERE name=:name";

3. try {

4. $db = getConnection();

5. $stmt = $db->prepare($sql);

6. $stmt->bindParam("name", $name);

7. $stmt->execute();

8. $view = $stmt->fetchObject();

9. $db = null;

10. if ($ajax) {

11. echo json_encode($view);

12. } else {

13. return json_encode($view);

14. }

15. }

16. catch(PDOException $e) {

17. echo '{"error":{"text":'. $e->getMessage() .'}}';

18. }

19. }

Listing 7: API: getView implementation

4.2.4 The	
 JavaScript	
 Application	

The application is build with AngularJS and using the AngularJS Seed as a template.
Over the course of the development the overall file structure remained, only a folder
for fonts has been added. In the following passages the different parts of the
application are explained in detail.

4.2.4.1 Bootstrapping

The application is bootstrapped right after all script files are loaded asynchronously.
General dependencies as well as the router are defined in js/app.js. AngularJS is
being told that the application depends on services, filters and directives. This
causes AngularJS to load the needed modules.

 36

Furthermore a router is registered to listen for a certain location. It
distinguishes between three types of locations to load the appropriate controllers
and views (Table 4).

Table 4: JS application: router

Following the URL patterns, which are relative to the applications location, will invoke the
related controllers and render the given templates. <VIEW> declares a parameter that
represents a views name, e.g. “human-adult-body”.

4.2.4.2 Controllers

The core of the application are the controllers, they contain the business logic and
thus process the inputs and induce the display of the output. The Semantic Body
Browser implements two controllers, one for displaying the illustrations and handling
the browsing and another one for the about section. The latter contains only one
function for changing the location and hiding an email address, due to the fact that
the about section solely displays static texts and images.

The main controller, called ViewCtrl, controls the data flow while browsing.
When the user enters a path that is different from “about”, the ViewCtrl will be
loaded. Before it is executed AngularJS ensures that all dependencies are loaded.
These dependencies are needed by the controller to perform all its tasks. There are
two different groups of dependencies; dependencies prefixed with a dollar sign *$*
belonging to AngularJS and everything else which are custom extensions.
Once the dependencies are injected, the controller will load information about the
current view from the database. It does so by calling a custom service and passing
specific parameters. When the data is successfully loaded AngularJS will execute a
callback function, which processes the data in a way that it can be used in the view
(Listing 8).

URL Pattern Template Controller Description

/ home.html AboutCtrl Index or default page.

/about about.html AboutCtrl Gives information about the application and
the project.

/<VIEW> view.html ViewCtrl Is used for displaying and manipulating the
illustrations.

 37

1. Api.query({

2. a: 'search',

3. b: $scope.data.view.stage,

4. c: $scope.data.view.species

5. }, function(data) {

6. $scope.zoomViews = data;

7. });

Listing 8: JS application: invoking a service

The example demonstrates how a service is called in AngularJS. The service “Api” queries
the API (line 1) and passes three parameters a, b and c to it (lines 2 – 4). These parameters
are used for defining the database query. When the API returns data the callback function
(line 5) will set the zoomViews variable to the returned data.

Information about the current view, the integrated units and the availability of higher
resolutions are fetched. Furthermore, the illustration is loaded. The data is stored as
an attribute of the current scope to make it accessible by the view.

Apart from that, the controller provides a number of methods to get or set
variables. These are needed to make certain information available for views because
those views have reduced possibilities to process data (Table 5).

Method Parameters Description

prefix hasPrefix Returns a views prefix depending on the parameter.

isZoomable unit Returns whether a higher resolution for the given unit is
available.

getOntId unit Returns the ontology identifier of a unit.

getDefinitions unit
single

Returns a single or multiple (depending on the parameter
single) definitions of a unit.

setActiveUnit unit
group

Call the services News to broadcast and set a new active unit.

setView view Changes the illustration to the given view if available.

setLocation url Changes the URL according to the parameter.

Table 5: JS application: controller methods

Finally, the controller watches for changes of the current location and the active unit.
The benefit is that changes in any of the two are immediately applied to the other

 38

one. This so called two-way data binding is currently not implemented between the
location service and a variable by AngularJS and thus has to be set up manually.
Because the active unit can be changed outside of the controller, it is being watched
for changes in the local variables and listened for changes from elsewhere (Listing
9).

1. $scope.$on('activeUnit', function() {

2. $scope.activeUnit = News.activeUnit;

3. });

4. $scope.$watch(function(){

5. return $location.search().unit;

6. }, function(newValue, oldValue) {

7. $scope.setActiveUnit(newValue);

8. });

Listing 9: JS application: watcher and listener

A listener is set by the method $on, defining what should be listened for as well as the
consequences (line 2). In this case the controller listens for the activeUnit and sets the
scope’s variable activeUnit to the one of the service News. The event activeUnit is
broadcasted by the service News whenever the active unit changes. This way any controller
or directive can act upon the change. A watcher does only detect changes of a local
variable; the unit parameter of the URL in this case e.g. “./adult-human-
body?unit=<PARAMETER>” (lines 4 – 5). The call back function (lines 6 – 8) passes two
values, the new and the old one of the variable that is being watched. Here it just calls the
method setActiveUnit and passes the new active unit.

4.2.4.3 Services

As described in the previous chapter, the view controller ViewCtrl loads several
dependencies. All of the custom dependencies are services. A service is defined as
a singleton that carries out a specific task [AngularJS, 2012].

The Semantic Body Browser implements three services, one for querying the
API, a second one for loading the illustrations and a third one that delivers
information across different parts of the application.
The first and the second service technically do the same and only distinguish in their
data source, which they are querying. Both depend on a module that is called

 39

$resource and is provided by AngularJS. The $resource service dramatically
simplifies the interaction with a RESTful API, like the one the Semantic Body
Browser implements (Listing 10).

1. angular

2. .module('sbb.services', ['ngResource'])

3. .factory('Api', ['$resource', function($resource){

4. return $resource('../api/:a/:b/:c/:d', {}, {});

5. }]);

Listing 10: JS application: service

Lines 1 and 2 register a new model called sbb.services and declare its dependencies:
ngResource, another module. Modules are simply the building blocks of an application,
which can depend on each other. The factory method in line 3 defines a new service called
Api. This service only needs to invoke and return the method $resource and define which
parameters – prefixed with a colon – are available (line 4).

The third service called News broadcasts events across the application. Because
the Semantic Body Browser application is composed of several directives and
scopes, it can be tricky to keep them all synchronized. The News service takes care
of that. It can be injected in any part of the application and provides a global way of
storing objects, plus each time an object is updated the news will be broadcasted to
anyone who is listening. The service News can broadcast three types of information:
first changes to the active unit, second the happening of a global click and its target
element and third the height of the information panel in the side bar.

4.2.4.4 Directives

The Semantic Body Browser defines eleven directives. These directives are used to
enhance normal HTML to be able to perform more interactive tasks. Five out of the
eleven directives are responsible for providing certain navigation options in the
header section. Another four are needed to make the side bar responsive, one
handles manipulation of SVG and the last directive works on the global scope to
detect certain events (Table 6).

 40

Directives Description

globalEvents Registered a global eventListener for a mouse click.

about Handles the about drop-down menu.

bookmarks Handles the bookmark drop-down menu as well as storing, retrieving and
opening a bookmark.

species Handles the species drop-down menu as well as displaying the available
species for a certain view.

stage Handles the developmental stage drop-down menu and processes the
different developmental stages.

zoom Handles the zoom drop-down menu and processes the different zoom views.

raphael Display illustrations and processes all inputs and interactions with the
illustration.

units Changes the height of the container units according to the information
panels below.

accordion Enables the information panels to expand and collapse.

omeSlider Enables the picture slider.

omeLoader Loads the picture from the Omero image server.

browserDim Only for development: Shows the browsers dimensions.

Table 6: JS application: directives

All directives share a similar structure. They define a name and list certain
dependencies if existing. The main logic is returned as an object that holds all of the
necessary information. It has to be defined how the directive will be invoked by the
HTML, what the template and scope looks like and the main functionality (Listing
11).

1. .directive('zoom', ['$location', 'News', function($location, News) {

2. return {

3. restrict: 'C',

4. templateUrl: 'partials/zoom.html',

5. scope: {

6. setLocation: '&',

7. zoomViews: '=',

8. level: '@'

9. },

10. link: function(scope, element) {

 41

11. var opened = true;

12. scope.enabled;

13. scope.toggle = function(state, init) {

14. if (scope.enabled || init) {

15. opened = (typeof state === 'undefined') ? !opened : state;

16. element.removeClass(opened ? 'closed' : 'opened');

17. element.addClass(opened ? 'opened' : 'closed');

18. }

19. }

20. scope.$on('click', function() {

21. if (element.find(News.clickTarget.tagName)[0] !==
News.clickTarget) {

22. scope.toggle(false);

23. }

24. });

25. }

26. }

27. }])

Listing 11: JS application: directive

The listing shows the shortened source code of the directive Zoom but the main
characteristics stay the same. The directive is defined in line 1 and has two dependencies:
the $location and News service. The returned object (line 2) contains several settings and a
linking function. This directive is called by placing its name inside a class attribute (line 3).
The template that is used – a drop-down menu – is loaded from an external file in the
partials folder (line 4). Every directive has its own scope. This makes it independent from a
controller, avoids conflicts and allows the directive to be used in different environments.
This zoom directive is though linked with a controller, as it needs a couple of data. First of
all, the method setLocation (line 6) is connected to this scope. Calling it from within the
scope will fire the external method. This is useful, as only one method needs to be
maintained. Apart from that is the object zoomView is connected to this scope as well (line
7). There is no direct need for it but simple binding, as it is realized with the level object, only
works with primitive data types and not with objects. The level is only a representation of
the controller’s variable and changes to it do not affect the parent scope (line 8). The link
function invokes the behaviour of the directive. It has two important parameters: scope and
element (line 10). The “scope” is a reference of the directives scope and the “element”
refers to the DOM element, on which the directive is applied. In lines 11 – 12, two variables
are set with the important difference that the first one is a private variable and cannot be
accessed from elsewhere, while the second is public because it is an attribute of the scope.

 42

The toggle function for opening and closing the drop-down menu is defined over the lines
13 – 19. Lines 20 – 24 show the use of the service News. This directive listens for a global
click. When such a click is broadcasted it will check its target and close the menu in case
the click was performed outside of the drop-down menu.

The most complex directive handles the illustration and provides ways for its
manipulation. First the data provided by the database is used to render the
illustration. The directive furthermore takes care of the right scaling by adjustments
to the view box and the stroke size. Besides that, a number of different mouse and
touch events are registered to make interactions available (Table 7).

Event Description

mouseover
mouseout

Pointing the mouse cursor over a unit highlights it.

mousedown
mousemove
mouseup

The illustration can be dragged while the mouse is pressed.

dragstart
drag
dragend

Equivalent touch events to mousedown, mousemove and mouseup.

click A mouse click on a unit highlights the unit and the related button in the
unit list in the right side bar.

tap Equivalent touch event to the mouse click.

double click A double click on a unit launches a dialog which gives a definition of the
unit and the possibility to further zoom in (if available) or to reveal more
information on CellFinder.

double tap Equivalent touch event to the double click.

mouse wheel The illustration can be magnified or shrunken by using the mouse wheel.

pinch Equivalent touch event to the mouse wheel but magnification is triggered
by a so-called pinch gesture. Two fingers have to be placed on the
illustration. Reducing the distance of the two fingers shrinks the
illustration and increasing the distance magnifies it.

Table 7: JS application: user events

The table lists all events that the directive raphael listens for.

 43

4.2.4.5 Templates

The view that is displayed in the browser is composed of templates. Templates
consist of HTML, CSS and are combined with AngularJS specific elements and
attributes.

The Semantic Body Browser separates several parts of a template in sub
templates, located in the partials directory, to make them reusable. The three main
templates relate to the three locations: index/home, about, views.

All main templates follow a certain structure. They comprise of a header and a
main container. The header contains the general navigation whereas all of the
content is part of the main container. The difference between the three templates
lies in the nature of their content. Two of them, the home screen and the about
section, only display static information. The template for the graphical browsing
instead has to handle dynamic data and thus is much more complex (Listing 12).

1. <header>

2. <nav id="nav">

3.

4. <li class="about drop" set-location="setLocation(url)">

5. …

6.

7. </nav>

8. <form id="search">

9. <div class="wrapper">

10. <input ng-model="searchInput" name="search" type="search"
placeholder="Filter Units" />

11. </div>

12. </form>

13. <h1 class="right">{{title}}</h1>

14. </header>

15. <div id="sidebar">

16. <section id="units" units>…</section>

17. <div id="information" accordion>…</div>

18. </div>

19. <div id="main" class="right">

20. <raphael id="raphael"

 ilu="ilu"

 set-view="setView(view)"

 set-active-unit="setActiveUnit(unit, group)"

 44

 is-zoomable="isZoomable(unit)"

 get-ont-id="getOntId(unit)"

 get-definitions="getDefinitions(unit, onlyOne)" />

21. </div>

Listing 12: JS application: template

The listing shows an extract of the template view. It features the top bar (lines 1 – 14), side
bar (lines 15 – 18) and the illustration panel (lines 19 – 21). The template is composed of
HTML5 and AngularJS specific attributes and elements – highlighted in orange.

4.2.5 Grunt	

To reduce the overall size of the application Grunt concatenates and minifies most
files. In detail, all JavaScript files that are part or belong to the same framework as
well as Cascading Style Sheets (CSS) are concatenated and then minified. The main
advantage is that the application can load much faster which is essential for mobile
usage (Table 8).

Source Files Concatenated File Uncompressed
(Byte)

Minified &
Compressed (Byte)

jquery.custom.js

jquery.min.js 234.990 29.360

jquery.mousewheel.js

jquery.omeloader.js

jquery.omeslider.js

hammer.js

jquery.hammer.js

raphael.js raphael.min.js 218.398 30.982

app.js

app.min.js 31.751 4.709

controller.js

directives.js

services.js

filters.js

normalize.css

style.min.css 35.823 5.113 style.css

drop.css

 45

ie9.css ie9.min.css 577 221

ie.css ie.min.css 587 273

Total 522.126 70.658

Listing 8: JS application: code compression

Compression of code can have a significant impact on the overall size of an application.
Grunt minifies the code by removing unnecessary white space and refactoring. Additionally,
server-side code compression that is performed by GZip does reduce the overall file size
further. In total the code has been reduced by ~86% from ~522 KB to ~70 KB.
(Compression has been performed on the 9 Oct. 2012)

4.3 Technical	
 Requirements	

The Semantic Body Browser is a web-based application. It is therefore necessary to
have access to the Internet and to use a modern web browser [Lazaris, 2012]. The
application can be used with many computer platforms, smart phones and tablets.
The application has been tested extensively (Table 9).

 46

Browser Version Level Limitations

Chrome 11+ A

5+ B • Dragging the illustration leads to offsets.
• Deselection of highlighted units is not possible
• Microscope pictures can’t be displayed

Safari 5+ A

4+ B • Dragging the illustration leads to offsets.
• Deselection of highlighted units is not possible
• Microscope pictures can’t be displayed

Mobile Safari iOS
5.1+

A- • Magnifying the illustration is slow

Firefox 3.6+ A

Opera 11.6+ A

Internet
Explorer

9+ A- • Interaction is slower compared to other browsers.

Table 9: Compatibility

The experience levels vary from A to C. If the browser is capable of delivering all technical
and visual features it is labelled with A. B comprises browsers that only have minor visual
limitations. Browsers of level C show significant limitations but can still be used. The
browsers are sorted by the recommended usage in respect to the Semantic Body Browser.

 47

5 Discussion
The Semantic Body Browser is a web-based tool to graphically explore an
organism’s body and obtain comprehensive biological information on the way. It is
part of the CellFinder project and therefore mainly focuses on students and
researchers who operate in cell and molecular biology or medicine.

5.1 Benefits	

It could be argued that there already exist similar applications17 18 19 20 but the
Semantic Body Browsers strongly differentiates itself in a number of features. First
of all the Semantic Body Browser is a web based solution. As a consequence, any
device that has access to the Internet and fulfils the technical requirements can run
the application. Only the Zygote Body is web based too. Furthermore the Semantic
Body Browsers relies on two-dimensional abstracted illustrations. While none of
them claim to describe the reality in every shape, they concentrate on main
anatomical structures and biological functions of the displayed area. This simplifies
the illustration and helps the understanding. As the main goal is not to provide an
anatomical replica we think minor inaccuracies do not harm the process of
navigation through an organism’s body but rather make it easier by ensuring a
minimal size for units and accessibility of every unit without rotation. Another
distinction is that the Semantic Body Browser integrates more than one dimension.
Most application solely provides the manipulation of the resolution whereas the
Semantic Body Browser has the possibility to switch between different species and
trace developmental stages. But the unique characteristic that distinguishes the
Semantic Body Browser from all other tools is the underlying CELDA ontology. By
means of annotated vector graphics, the use an ontology and the integration into
CellFinder, it is possible to deliver relevant and detailed biological data along the
navigation. The components or units of the Semantic Body Browser’s illustrations

17 http://www.zygotebody.com
18 http://www.imaios.com/en/iPad-iPhone-Android
19 http://www.pocketanatomy.com
20 http://www.modality.com/body/

 48

express a meaning, which enhances with the on going development on CellFinder
and respectively CELDA.

To conclude, there are a number of human body browsers available but they
do only focus on a single domain and this undoubtedly quite well. The Semantic
Body Browser on the other hand is a web based tool that works across several
devices and provides comprehensive biological data in a wide range of domains
while navigation along the three dimensions: resolution, development and species.

5.2 Semantics	

Another issue to discuss is why this application is called semantic. The semantics
expresses the meaning of two related objects. Within the scope of the web, it often
refers to the annotation of information in a way that the information can be
processed and - in best case - understood by machines. In this respect, the
Semantic Body Browser is not directly semantic. The semantics reveals when the
application is seen as a part of CellFinder. All of CellFinder’s data is linked to the
CELDA ontology and so are the illustrations of the Semantic Body Browser. Every
view and every unit is mapped to a certain term. This way the illustrations as well as
its components express meaning.

CELDA already correlates most of the terms by their hierarchy (is_a),
development (develops_form, develops_into) and species (via the general Uberon
ontology). Therefore it could be asked why the application uses an own data source
and does not fully rely on CELDA. The problem in relation to the Semantic Body
Browser is the high resolution and the diverse nature of the different ontologies
(Figure 14). It does not always make sense to provide a new view / illustration for
every term and would furthermore exceed the budget. Thus a mapping is needed
which defines relevant and useful steps for the browsing experience. For this
reasons a database is sufficient. Nevertheless, as the development of CellFinder and
CELDA moves forward it could be discussed if it is beneficial to develop a bridge-
ontology to reflect more semantics.

 49

Figure 14: Comparison of ontology levels with the Semantic Body Browser’s views

The grey ontological terms represent an abstract from the Foundational Model of Anatomy
(FMA) ontology. Three difficulties occur in this example. First, the resolution is very high and
it would not enhance the browsing experience to include views for every term. Second, the
cellular level is not always represented ideally. The podocyte of the FMA occurs at a totally
different location and CELDA maps it not accurately enough. The third difficulty is that the
integration of several ontologies under CELDA leads to multiple terms of the same object.
As they are already classified as equal, the question would be which term should be used
for browsing? This cannot be answered in general and depends on the situation. To
conclude, it is better to create an own, browsing-specific hierarchy and map the views to
CELDA.

 50

5.3 Differences	
 Between	
 Species	

Within the scope of this thesis, the Semantic Body Browser implements 30 views
which split up equally for each species: human and mouse. However, only a single
illustration of the mouse differs from the human ones, which is the body’s overview.
This is caused by the fact that the kidneys anatomy does not show significant
anatomical differences. The higher the resolution, the higher is the similarity between
the human and mouse anatomy.

Including species, whose common origin is further away, would surely lead to
more differences, which would result in more species-specific illustrations.

5.4 Monochrome	
 Illustrations	

The Semantic Body Browser only displays monochrome illustrations. While it is true
that colours help to recognize and distinguish shapes it can get distracting.
Furthermore, the contrast between objects vanishes the more colours are used. In
respect to biological illustration it should also be noted that some of the commonly
used colours are arbitrary. Especially sub cellular colouring derives from specific
staining.

In conclusion, consistently colouring biological illustrations needs
comprehensive research, which was out of the scope of this thesis. It was therefore
decided to use monochrome graphics first and re-evaluate colouring in a later step.

 51

6 Outlook
The scope of this thesis was to develop the Semantic Body Browser with all
technical features and to demonstrate them as a proof of principle for one organ in
two species. Future updates could focus on the extension of views. More organs,
species or developmental stage would enhance the user’s browsing experience. As
mentioned in the previous chapter most anatomical differences vanish between
mammals as the resolution is increased. It would therefore be interesting to
integrate species whose biological origin is further away from each other.

Another interesting field of research could involve the integration of
processes. Many of an organ’s function originate in cellular or sub cellular
processes. Showing or linking these processes within the illustration could help to
make them easier to understand. Creating animations surely takes time but
fortunately, the tool used for displaying the vector graphics in the Semantic Body
Browser already satisfy the technical requirements.

In general, enhancing the annotation of the illustrations and integrating more
interactions with CellFinder’s data would be appealing and surely help CellFinder to
improve the user experience.

 52

7 Reference
[AngularJS, 2012] AngularJS, Developer Guide, AngularJS, 2012. [Online]. Available:

http://docs.angularjs.org/guide/ [Accessed: 8 Aug. 2012].

[CellFinder, 2012] CellFinder team, About, CellFinder, 2 Oct. 2012. [Online]. Available:
http://cellfinder.de/beta/about [Accessed: 2 Oct. 2012].

[Crockford, 2001] D. Crockford, JavaScript: The World's Most Misunderstood
Programming Language, Douglas Crockford, 2001. [Online].
Available: http://javascript.crockford.com/javascript.html [Accessed:
2 Oct. 2012].

[Davidson, 2009] A.J. Davidson, Mouse kidney development, StemBook, ed. The
Stem Cell Research Community, 15 Jan. 2009. [Online]. Available:
doi/10.3824/stembook.1.34.1 [Accessed: 5 Sep. 2012].

[Gerett, 2005] J.J. Gerett, Ajax: A New Approach to Web Applications, Adaptive
Path, 18 Feb. 2005. [Online]. Available:
http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications [Accessed: 29 Sep 2012].

[Guyton, 2006] A. Guyton and J. Hall, Textbook of Medical Physiology, 11th ed.
Philadelphia: Elsevier Saunders, 2006, p. 310.

[Harding, 2011] S.D. Harding et al., The GUDMAP database – an online resource for
genitourinary research, Development, vol. 138, Jul. 2011, pp. 2845-
2853. [Online]. Available: doi: 10.1242/dev.063594 [Accessed: 14
Aug. 2012].

[Haudry, 2008] Y. Haudry et al., 4DXpress: a database for cross-species expression
pattern comparisons, Nucleic Acids Res., vol. 36 (Database issue),
Jan 2008, pp. D847-D853. [Online]. Available: doi:
10.1093/nar/gkm797 [Accessed: 5 Oct. 2012].

[Lazaris, 2012] L. Lazaris, Old Browsers Are Holding Back The Web, Smashing
Magazine, 9 Jul. 2012. [Online]. Available:
http://www.smashingmagazine.com/2012/07/09/old-browsers-are-
holding-back-the-web/ [Accessed: 27 Sep. 2012].

[Manski, 2012] D. Manski, Anatomy of the kidney: gross anatomy, Urology
Textbook, 11 Oct 2012. [Online]. Available: http://www.urology-
textbook.com/kidney-anatomy.html [Accessed: 12 Oct. 2012].

[McMahon, 2008] A.P. McMahon et al., GUDMAP: the genitourinary developmental
molecular anatomy project, J Am Soc Nephrol., vol. 19, no. 4, 20
Feb. 2008, pp. 667-671. [Online]. Available:
10.1681/ASN.2007101078 [Accessed: 14 Aug. 2012].

 53

[Mozilla, 2012] Mozilla Developer Network and contributors, JavaScript, Mozilla
Developer Network, 24 Sep. 2012. [Online]. Available:
https://developer.mozilla.org/en-US/docs/JavaScript [Accessed: 30
Sep. 2012].

[Pavenstädt, 2003] H. Pavenstädt, W. Kriz, M. Kretzler, Cell Biology of the Glomerular
Podocyte, Physiological Reviews, vol. 83, no. 1, 2003, pp. 253-307
[Online]. Available: doi: 10.1152/physrev.00020.2002 [Accessed: 11
Aug. 2012].

[PHP, 2012] PHP contributors, Prepared statements and stored procedure, PHP,
5 Oct. 2012. [Online]. Available:
http://php.net/manual/en/pdo.prepared-statements.php [Accessed:
9 Oct. 2012].

[Reenskaug, 1979] T. Reenskaug, “MODELS - VIEWS - CONTROLLERS”, Xerox Parc:
Palo Alto, 10 Dec. 1979. [Online]. Available:
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
[Accessed: 2 Oct. 2012].

[Resig, 2009] J. Resig, Talk: The DOM is a Mess, John Resig, 2 Feb. 2009.
[Online]. Available: http://ejohn.org/blog/the-dom-is-a-mess/
[Accessed: 17 Sep. 2012].

[Schiller, 2011] J. Schiller, SVG Support, Codedread, 24 Mar 2011. [Online].
Available: http://www.codedread.com/svg-support.php [Accessed:
8 Oct 2012].

[W3C, 2011] W3C, Scalable Vector Graphics (SVG) 1.1 (Second Edition), W3C,
16 Aug. 2011. [Online]. Available: http://www.w3.org/TR/SVG11/
[Accessed: 9 Aug. 2012].

[W3C, 2012] W3C, Document Object Model (DOM) Technical Reports, W3C, 2
Jun. 2012. [Online]. Available: http://www.w3.org/DOM/DOMTR
[Accessed: 18 Aug. 2012].

[W3Techs, 2012] W3Techs, Usage of JavaScript libraries for websites, W3Techs –
Web Technology Surveys 9 Oct. 2012 [Online]. Available:
http://w3techs.com/technologies/overview/javascript_library/all
[Accessed: 9 Oct. 2012].

[Werner, 2012] S. Werner et al., poster presented at the BioIT World, Bosten, USA,
2012. [Online]. Available: http://cellfinder.de/beta/dl/Poster-
CellFinder-BioIt-2012.pdf [Accessed: 12. Aug 2012].

[Wikipedia, 2012] Wikipedia Community, Kidney, Wikipedia – The Free Encyclopedia,
13 Aug. 2012. [Online]. Available: http://en.wikipedia.org/wiki/Kidney
[Accessed: 14 Aug. 2012].

 A

APPENDIX

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CELDA Cell: Expression, Localization, Development, Anatomy

CS Carnegie stage

CSS Cascading Style Sheets

DB Database

DOM Document Object Model

FMA Foundational Model of Anatomy

HTML Hypertext Markup Language

JS JavaScript

JSON JavaScript Object Notation

KB Kilobyte

PHP PHP: Hypertext Preprocessor

REST Representational State Transfer

SQL Structured Query Language

SVG Scalable Vector Graphics

TS Theiler stage

URI Uniform Resource Identifier

URL Uniform Resource Locator

VML Vector Markup Language

W3C World Wide Web Consortium

XML Extensible Markup Language

 B

List of Figures

1. Anatomy of the kidney in human and mouse 5

2. Developmental stages of the nephron in human and mouse 7

3. Vector vs. raster graphics 8

4. HTML and DOM 11

5. AJAX 12

6. Original MVC design pattern 14

7. MVC implementation of AngularJS 15

8. System architecture 21

9. Database design 23

10. Semantic Body Browser: home screen 26

11. Semantic Body Browser: podocyte 28

12. Browse Tree 29

13. RESTful API 34

14. Comparison of ontology levels with the Semantic Body Browser’s views 49

 C

List of Listings

1. SVG example 9

2. AngularJS: example application 16

3. Gruntfile example 19

4. SVG to JSON converter: prompt 30

5. SVG to JSON converter: algorithm extract 30

6. SVG to JSON converter: output 31

7. API: getView implementation 35

8. JS Application: invoking a service 37

9. JS Application: watcher and listener 38

10. JS Application: service 39

11. JS application: directive 40

12. JS application: template 43

 D

List of Tables

1. AngularJS Seed: file structure 17

2. API 24

3. Novel ontology terms 32

4. JS application: router 36

5. JS application: controller methods 37

6. JS application: directives 40

7. JS application: user events 42

8. JS application: code compression 44

9. Compatibility 46

Eidesstattliche Erklärung
Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate aus
fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in
gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und
auch nicht veröffentlicht.

Datum Unterschrift

