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Abstract 

Over the last decade, technologies for measuring biological characteristics in high-

throughput fashion have advanced dramatically, numerous novel methodologies have 

been invented and data accumulates at an ever-increasing rate. The community needs 

to handle petabytes of so-called ‘OMICS’ data alone and recent efforts are 

encouraging a shift from local to global cloud-based storage solution to facilitate 

sharing. A principal challenge engendered by this development is how data can be 

easily found and explored by researchers. Classic information retrieval system focus 

on finding specific data given some input query like keywords and mostly rely on 

string matching against a textual content. While this works well for actual text-based 

content it is less effective for biological data which primary content is often numeric; 

thus, applications rely on search across associated metadata. Related to the explosion 

of biological data generation, the community realized a need for standard description 

of the data masses in order to provide interoperability and reuse of data. This led to 

the development of several large biomedical ontologies. Efforts have been put into 

automated mining and annotation of biological data using ontologies, providing rich 

descriptions of the experimental setup and findings. Up-to-date ontologies are 

mostly used for analysis of data sets and extraction of specific knowledge via 

semantic queries. This thesis assesses the possibilities of using ontological 

annotations to visually describe the nature of data collections, such as whole 

repositories or subsets like search results, and to provide means of exploration along 

the semantic relationships of annotation terms. 

I describe an integrative approach of ontology-guided visualization of 

metadata annotations across a data repository in combination with a modern text-

based search and data set previewing. A prototypical implementation demonstrates 

the feasibility and enhancements compared to existing system. Additionally, a case 

study evaluates the general effectiveness of the proposed method given a real-world 

data collection. 
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1 Introduction 
The topic of this thesis is the exploration of biomedical data repositories through 

integrated search and visual exploration along text-based and ontology-guided 

metadata. 

1.1 The problem 
During the last decade technologies for measuring biological characteristics such as 

the genome, transcriptome or metabolome have evolved dramatically and the number 

of data sets generated is steadily growing. Today, the community is facing petabytes 

of so-called “-omics” data (Eisenstein 2015) alone. Managing and finding the right 

data becomes more and more involved. Large repositories like Gene Expression 

Omnibus (Edgar et al. 2002) or ArrayExpress (Kolesnikov et al. 2015) host a variety of 

different functional genomics data sets, including gene expression, genome variation, 

methylation, non-coding RNA, and many other profiles. The first step in managing 

the large amount of data was taken in 2001 when the Minimum Information About a 

Microarray Experiment guidelines have been introduced (Brazma et al. 2001), which 

later became the standard for microarray data annotations. Along with guidelines for 

the description of functional genomics data, controlled vocabularies have been 

developed that further increase the expressiveness and avoid ambiguities. 

Taxonomies and ontologies are the most commonly used controlled vocabularies for 

annotation of biomedical data. While taxonomies provide some structure and 

unambiguous naming, ontologies offer rich ways to semantically describe the 

relationships of concepts and enable the inference of new knowledge. The Gene 

Ontology (GO) (Ashburner et al., 2000) was the first major biomedical ontology that 

quickly obtained high popularity and widespread in the biomedical community. 

Among others, the Experimental Factor Ontology (EFO) (Malone et al., 2010) is 

extensively used to capture various experimental conditions underlying the data 

generation and is hosted at the European Bioinformatics Institute in the United 

Kingdom. The main advantage of utilizing ontologies for annotation of biomedical 

data is twofold: Frist, controlled globally unique vocabulary avoids naming 

ambiguities and fosters reuse of existing knowledge. Second, the underlying 

mathematical logics enable automated inference of new information. Having a 

controlled description of the data is the first crucial step to ensure the usefulness of 

data in the future. 

Today most data repositories solely rely on textual representation of their 

content. Users have the possibility to query the application against keywords and 

retrieve results holding a minimal amount of information, e.g. title, author, date etc., 

to provide a first insight. Internally, systems match keywords against their document 

corpus and return a ranked list of decreasing relevance. The document’s relevance is 
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determined via complex formulas that evaluate weighted frequencies of keyword 

matches within a document against the total collection. Though, some systems 

experiment with data-driven search algorithms (Fujibuchi et al., 2007), the majority 

relies on text-based queries. Whether users find relevant data is subject to two 

characteristics: findability (Morville, 2005) and discoverability. The first term 

describes how easy it is to locate elements of information in a known space while the 

latter describes the efficiency to discover (new) information in an unknown space. 

Both criteria need to be met in order for a repository to be fully explorable. 

A major challenge in finding the right data is that users are not directly 

operating on the biological data itself but instead on metadata of descriptive texts 

(e.g. summaries, protocols, etc.). There are many ways to express the same ideas and 

while controlled vocabularies are often used to simultaneously search for synonyms 

of query keywords, the relation between different search results remains hidden. It is 

not obvious why certain documents are ranked higher than others. Also, if the exact 

keyword to be searched is unknown it is challenging to find relevant data. While word 

ambiguities referring to the same concept can be solved well by inclusion of synonym 

collections such as the Medical Subject Headings (Rogers, 1963). Making data sets 

related to higher-level or lower-level terms explorable in purely text-based search 

applications is more challenging because it is not known in which situation the user 

wants to include related data. Also, even closely related concepts might have distinct 

names, making autosuggestions less intuitive. For example, should a search for 

epithelial cell retrieve or suggest data related to podocyte–also known as renal 

glomerular visceral epithelial cell–a subclass of epithelial cell? Another major problem is 

that there is no simple way to understand the nature of the repository or subsets of it, 

such as search results. Most repositories only specify the total number of hits or very 

generic statistics like the total number of data sets. Data repositories that have been 

thoroughly annotated with ontological terms have the potential to provide 

meaningful context, can aid better understanding of relationships to find hidden 

data, reveal trends, and ultimately facilitate semantic exploration. While there are 

many tools available for exploring data, most of them work in isolation or focus on a 

single task only. Up to date, there is no tool available that addresses the different 

aspects of search and exploration in an integrated manner. 

1.2 Importance of the problem 
The sheer amount of biomedical data and the high complexity of experimental setups 

increase difficulties in finding relevant data. Finding the right data is key to answer 

biological questions and deriving new hypothesis in computational biology and 

beyond. Having better ways of exploration can highlight patterns and improve overall 

reusability of data. 
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1.3 Research questions and scope of the thesis 
The main research question of this thesis is how the exploration of ontologically 

annotated biomedical data collections can be improved in two ways: better 

understanding of search results and the composition of the repository as a whole. 

Hereby, exploration is meant to be the act of browsing and searching to find known 

and unknown data and to discover novel information. The goal of this thesis is to 

provide a method to visualize the semantic composition of annotations and allow for 

ontology-guided querying and filtering alongside with text-based search. 

The scope of this thesis is to conduct a requirement analysis, review previous 

work on user interfaces that deal with repository exploration, and to develop new 

ways of browsing and exploring heterogeneous biomedical data repositories. The 

requirement analysis is intended to describe the needs and required tasks of the 

exploration approach and to categorize these according to different user groups. 

Related work in the field of repository exploration should provide an overview of the 

current state of research and point out known limitations that need to be addressed. A 

novel visual exploration approach should be developed, implemented and integrated 

into the Refinery Platform as a proof of principle. Finally, the prototype is to be 

evaluated using real-world data. 

1.4 Proposed Solution 
When searching for text documents search engines return the keywords found in 

their natural context, enabling the user to reason about the document’s semantics 

derive relevance. Without a context it is difficult to judge whether a retrieved 

document really matches the user’s needs and whether it fits to the user’s mental 

model. An increasing number of biomedical data collections have been annotated with 

ontological term but in regards to text-based search those terms might not match or 

might not be familiar to the user. Similar to how the most relevant query keywords 

are presented within their context, the annotation terms themselves can be put into 

context by showing the semantic connection using their ontological relationships. In 

order to facilitate the understanding of search results, a novel list-like compact graph 

visualization has been combined with a tree map visualization to provide both: 

sensemaking of the current search results, providing an overview of the repository, 

and to enable ontology-guided querying to facilitate semantic exploration. 

1.5 About this document 
This thesis is roughly structured into three parts. Chapter 2 introduces the core 

concepts of search, visualization, and ontologies and describes related work. Chapter 

3 introduced the data source used across this project, describes the design process 

and lists the user needs and required tasks for the exploration process. Chapter 4 

presents the results in form of an implementation of two visualization methods and 

their integration into the host application–Refinery Platform–for searching, 
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browsing, and exploration. Furthermore, a real-world case study for evaluation of the 

novel exploration method is presented. Finally, chapter 5 discusses the results and 

conclusions, examines current limitations, and gives an outlook for future 

enhancements. 
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2 Background 
Ontology-guided exploration of biological data repository is a cross-cutting challenge 

of how to find and visualize relevant data. The next chapters summarize the current 

state of research regarding search processes, visualization principles, bio-ontologies 

and related work. 

2.1 Search principles 
Information and data-driven search has become an omnipresent process in many 

digital activities. To highlight the great importance of information, George A. Miller 

coined the term “informavore” (Machlup, 1983) to characterize organisms that 

consume information in analogy to organisms that consume food to derive energy. 

The principles of digital search (subsequently just called search) include the 

extensively studied field of information retrieval, information seeking behavior, human-

computer interactions as well as information architecture. Information retrieval is dealing 

with the technical and algorithmic aspects of search, i.e. finding ways to retrieve only 

relevant data and to optimally rank the documents in such a way that the highest 

relevant data are ranked first. The process of information seeking or more specific 

information search describes the act of how humans seek for data and interact with a 

given search system. Human-computer interactions study the generally behavior of 

how people interact with computer systems. In the context of search this means 

studying how people work with the search interfaces. The final component is 

information architecture, which concerns about ways how information is best 

structured in order to be found most easily by humans. All four components are 

highly intertwined and crucial to ensure high usability in terms of findability and 

discoverability. 

2.1.1 Information retrieval 

The technical process of retrieving relevant information from a collection of 

information resources, given a well-defined information need is called information 

retrieval (IR). The process is usually assumed to start with the user identifying a lack 

of information. The notion of information need describes the information that is 

needed to solve a specific problem and is typically being seen from two points of 

view: the IR system and the user who expressed the need. The first can be described 

as the object information need and characterizes the set of documents that are needed 

by the IR system to fully answer the given query. The latter is sometimes referred to 

as subjective information need of the user who suffers from the lack of information. It 

is generally nontrivial to capture subjective information needs unless users are asked 

directly; thus, in the context of IR, objective information need is often regarded only. 

Information seeking (covered in Chapter 2.1.2) studies the user’s point of view in 

finding information (Marchionini, 1995, see Chapter 1). Information need can be fact-

oriented, problem-oriented or a combination of both. For example, “What are the 
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four nitrogenous bases found in RNA?” is a fact-oriented information need and can 

easily be answered by “adenine, cytosine, guanine and uracil”. On the other hand, 

questions such as “How do ribosnitches alter gene expression and what is their role 

in cancer?” normally require the IR system to retrieve more than one document to 

solve the problem. The technical aspect of IR starts when a query is submitted to an 

IR system (Figure 2.1). In most cases search queries consist of a set of keywords such 

as “riboswitches vs ribosnitches” but can generally be of any kind. Other frequently 

used query data types are images, audio messages of natural language, or even a 

document of the IR system itself. Usually, before the IR system issues a search, the 

query is normalized and transformed into a compatible query format (Figure 2.1, 2). 

Hereby, the query format strongly depends on the IR system. Next, the IR system 

retrieves all documents that match the given search query. The search can 

incorporate the document’s content, metadata or both (Figure 2.1, 3). Subsequently, 

the retrieved documents are being sorted by decreasing relevance given an internal 

model (Figure 2.1, 4).  

 

Figure 2.1: Holistic process of information retrieval. (1) The formulated query is depicted as 

rectangles of different length to symbolize different features. (2) The query is analyzed and 

transformed into a compatible format. (3) Documents with features similar to the query are 

extracted from the corpus. Features can match metadata or content traits. (4) The extracted 

documents are ranked according to their relevance. 

The term relevance is used to describe how well a certain document matches 

the given search query in terms of its usefulness to answer the problem. Similar to 
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objective and subjective information need, relevance can be objective and subjective too. 

In the follow paragraphs relevance is used as a synonym for objective relevance. 

The two most crucial components of any IR system are the ability to 

efficiently find the documents that match to the given input query and to rank these 

documents in such a way that it reflects the relevance best. Depending on the input 

query, the retrieval algorithms can vary dramatically. Since this thesis makes use of a 

text-based IR system only, other strategies will not be described here. Before 

anything can be retrieved from an IR system, the data needs to be imported from the 

original data store. The process consists of three main steps: translating the original 

data into a model that is suitable for searching, analyzing the content and metadata 

of each document, and finally indexing the documents. The first step is handled by an 

external application and depends on the structure of the documents to be indexed and 

which features are planned to be used for later retrieval. Once the data has been 

extracted, transformed, and handed over to the IR system, the data goes through a 

process called analysis, which translates text into tokens. A token could be considered 

the smallest data nugget in an IR system and represents a normalized word or parts 

of a word. The process of analyzing document content is also called tokenization and 

can be regarded as feature extraction since tokens ultimately represent the 

document’s features. Tokenization can incorporate a variety of different steps such as 

ASCII conversion, lowercasing, split on punctuation and space, stop word removal, 

removal of possessive form, stemming or lemmatization. Figure 2.2 provides an 

example analysis. When a search is issued, the query must be analyzed in exactly the 

same way as the documents had been analyzed to ensure that tokens match. After 

tokenization, the final step is to index the data using a data structure called inverted 

index. At its core, the inverted index contains two objects: an alphabetically sorted list 

of all tokens and a dictionary containing the document IDs in which a token appears. 

The first is called token list and links tokens to their dictionary entry. Retrieving all 

documents that contain any of a given set of query tokens is then just a matter of 

finding the terms in the term list, moving to the containment dictionary to extract all 

documents with listed IDs. A thorough introduction to information retrieval is given 

by Manning et al. (2008) and a practical guide from Turnbull and Berryman (2016) 

provides insides into relevance engineering. 
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Figure 2.2: Example analysis of an English sentence. In each step the characters to be changed 

or removed in the next analysis step are marked in red. (1) The string’s non-ASCII characters 

are translated into their ASCII counterparts or removed if no counterpart is available. (2) 

Uppercase characters are lowercased. (3) The token is split into smaller tokens at every white 

space and punctuation. (4) Common words that do add little value in retrieving relevant 

documents are called stop words. These stop words are typically removed. (5) Words are often 

transformed into their stem or lemma, in order to efficiently match the great variety of 

different grammatical forms. E.g. “establishing”, “established” and “establishment” will all be 

lemmatized into “establish”. 

In order to evaluate the performance of an IR system a number of metrics 

have been defined. The most common metrics are precision, recall, F-score and mean 

average precision (MAP). Precision is the number of relevant documents divided by the 

total number of retrieved documents (Figure 2.3). On the other hand, recall describes 

the number of retrieved relevant documents divided by the total number of retrieved 

documents (Figure 2.3). Given a binary classificatory, precision and recall are 

equivalent to positive predictive value (i.e. true positives divided by true positives and false 

positives) and true positive rate or sensitivity (i.e. true positives divided by true positives 

and false negatives). Precision and recall are often negatively correlated, e.g. increasing 

the number of retrieved documents increases recall but most likely decreases precision 

since irrelevant documents will be returned too. The F-Score has been introduced to 

provide a measure for the tradeoff between precision and recall and is the (evenly) 

weighted harmonic mean of precision and recall). Because precision and recall do not 

take the ranking into account, i.e. it does not matter if relevant or irrelevant data is 

returned first MAP has been introduced to overcome this limitation. MAP reflects the 

mean of the totalized averaged precision up to a certain search result ! (Figure 2.3). 
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Figure 2.3: Precision, recall and MAP. 

2.1.2 Information seeking 

The process of how humans seek and search for information has been extensively 

studied over the past three decades. Many different theoretical models have been 

developed that attempt to explain the behavior. In contrast to information retrieval, 

which technically ends when results have been retrieved, information seeking implies a 

more open-ended process. The term itself was first coined by Wilson (1981) in order 

to better study the act of seeking for information. The standard model describes the 

process an potentially repetitive cycle of identifying the need for information, 

building a mental model and translating that mental model into words, followed by 

the specification of keywords for querying, evaluation of the retrieved results, and if 

necessary reformulation of the query until the desired information is found. This 

model assumes a clear task and need but the way to a satisfactory conclusion is not 

known, thus the query might be adjusted iteratively. The standard model is depicted 

in Figure 2.4 by the red arc indicating query term refinements. A more dynamic model 

called berry-picking describes search as an open-ended process, in which the need for 

information changes with every iteration. A clear final goal does not exist at the 

beginning and it changes over time as the user gains knowledge from previous 

results, hence the information need is not static but constantly changes in parallel to 

the search process. Figure 2.4 indicates the relationship between the knowledge 

gained through search and the change in information need by means of the yellow 

arc. Kuhlithau (1991) proposed information search process; an information seeking model 

consisting of six steps: initiation, selection, exploration, formulation, collection and 

presentation. Here, initiation marks the recognition of the information need. First the 

lack of information is put into context with what is already known and some general 

broad ideas for a possible direction of search are initiated. The second step (selection) 

describes the selection of a general topic, which will be explored in the third step in 
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order to gain a better understanding of the new information space. Formulation marks 

the fourth step and is mainly about specifying search and building a more focused 

search direction. The fifth step (collection) involves the collection of the needed 

information and is described as the most productive step. Finally, information is 

validated and summarized and characterizes the end of the search process. 

Throughout the six steps confidence is supposed to be build up along with 

satisfaction or disappointment depending on the success of search. Information 

seeking through steps is illustrated by the blue arc in Figure 2.4. Some information 

seeking processes can be summarized as strategic approaches (Hearst, 2009, see 

Chapter 3) to find information. Information foraging is a famous theory developed by 

Pirolli and Card (1995) as an attempt to model how the strategies and technologies 

for information seeking, searching, and consuming adapt along those processes. The 

rational is based on ideas of how animals succeed in foraging food. It is assumed that 

human users strive to consume the information with an optimal cost–benefit ratio. 

Applied to the processes of searching this theory argues that human users constantly 

evaluate their tactics on how to find the highest amount of information with the least 

input of mental energy. Information foraging picks up the idea of informavores, which 

characterize species that consume information. The most important aspect of the 

information foraging theory is the concept of information scent (Pirolli et al., 2000). 

Similar to how animals rely on scent to evaluate the odds of finding food or prey in a 

given region, digital documents and user interfaces are scanned by human users for 

hints and guides on where to find more information. Research on information scent is 

subsequently strongly connected to human-computer interaction and information 

architecture. Related to information scent is the theory of the patch-leaving model, 

which studies conditions that make users leave the current page in belief to find 

information elsewhere more easily. Information seeking as a strategy also describes 

scenarios where the user gives up when finding information becomes too costly. The 

green arc in Figure 2.4 represents strategic processes. Information seeking can be seen 

as part for a broader process often referred to as sensemaking (Russell et al., 1993), 

which describes the holistic behavior of how users transform information into 

meaningful knowledge. 
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Figure 2.4: Summary of information seeking processes: classic (red arc), berry-picking (yellow 

arc), information seeking as stages (blue arc) and strategic information seeking (green arc). 

A final note on information seeking strategies is the distinction between 

searching and browsing in which searching is denoted as the act of articulating 

desired information needs and browsing describes the strategy of recognizing a 

relevant option among presented navigational choices. When the browse navigation is 

well suited to a user’s need the process of browsing is often cognitive less challenging 

than formulating one’s needs for issuing a search query (Hearst, 2009, see Chapter 

3). 

2.2 Visualization principles 
Visualization describes the process of graphically describing information to 

communicate a story. There are two major fields of visualization: scientific data 

visualization and information visualization. Both fields study ways to visually 

represent biomedical data. Scientific visualization deals with data that has an intrinsic 

real-world appearance or is at least strongly related to a real-world object. Examples 

are 3D animations of the blood flow within the human’s heart or visualizations of 

molecules. On the other hand, information visualization is working with abstract 

data, such as DNA sequence alignments or gene regulatory networks. Since this 

project is dealing with abstract data only, the following paragraphs will solely focus 

on information visualization. Statistician Francis Anscombe has greatly illustrated 

why information visualization matters. He created the famous Anscombe’s Quartet 

(Anscombe, 2012) (Figure 2.5), which illustrates the expressive power of visualization. 
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Figure 2.5: Anscombe’s Quartet. An artificial data set comprised of four different sets of data 

points. Each set has almost identical characteristic: mean x value of 9, x variance of 11, mean y 

value of ~7.5, y variance of ~4.12, an x-y correlation of ~0.82 and a linear regression of 

!! = !3 + 0,5!. Still, all four data sets are dramatically different. 

At its core, each visual idiom (i.e. a chart or diagram) is composed of small 

marks, the primitive elements, such as points, lines, or complex shapes. Each of these 

marks has a number of different channels, which can be used for discrimination. 

Channels include the vertical and horizontal position (artificial as well as spatial), 

shape, color (hue, luminance and saturation), orientation (also called angle or tilt), 

size (length, area or volume) and motion. Figure 2.6 provides an overview of the most 

common marks and channels. Not every mark can be manipulated in all dimensions. 

For example, rotation of a circle does not create a new distinguishable mark. 

 

Figure 2.6: Overview of basic visual marks and channels. Adapted from Munzner (2015, see 

Chapter 5). 
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The channels can be divided into two groups (Munzner, 2015, see Chapter 5): 

magnitude channels and identity channels. Magnitude channels represent a data 

item’s property value that follows some order. For example, this could be the number 

of reads that map to a specific region of the genome. Channels that are suitable for 

magnitude illustration are position (aligned or unaligned), size (length, size or area), 

orientation (tilt or angle), color (hue, luminance or saturation) or motion. Identity 

channels are used to group marks and thus require categorical data. Suitable channels 

are spatial region, color hue, motion and shape. The two channels color hue and 

motion can be used to some extend with both ordered and categorical data separately 

but not at the same time since. While motion is less common, color hue is often being 

applied to heat map visualization techniques. Munzner (2015, see Chapter 5) 

summarized the current state of understanding about the effectiveness of different 

channels (Figure 2.7). 

 

Figure 2.7: Effectiveness of different visual channels. Effectiveness has been measured 

according to the error rate by means of discrimination and perceptual speed. Color hue has 

been added as a magnitude channel since its extensive use in heat map visualization methods. 

While the effectiveness of hue as magnitude channel is not known, relative to this ranking it 

can be assumed to be low. Adapted from Munzner (2015, see Chapter 5). 

Perceptual grouping is a process of mentally associating multiple marks or 

elements to groups or patterns. Research on perceptual grouping studies how 

human’s visual system determines which elements of an image belong to a higher 

order concept. This is key to understand human’s remarkable pattern recognition. In 
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real life almost no object is perceived as a continuous element duo to occlusion, 

different lightning and other criteria. In order to organize the visual clutter and 

successfully map regions of an image to known concepts, our visual system needs to 

link different fractions of an image together. In the early 20th century Gestalt 

psychologists investigated rationales behind perceptual grouping of elements within 

an image. Max Wertheimer described the first set of laws that drive grouping in 1923 

(Wertheimer, 1923) and 1938 (Wertheimer, 1938). Those laws that are now more 

generally accepted as principles include proximity, similarity, prägnanz (i.e. 

“pithiness”), common fate, closure, continuity, symmetry, and figure–ground. 

Additionally, Stephen Palmer described two more principles in 1990’s: common region 

(Palmer, 1992) and connectedness (Palmer and Rock, 1994). These modern principles 

are now commonly associated with the Gestalt principles as well. The following 

paragraph will describe the rationale behind each of the principles in brevity. A 

detailed evaluation has been given by Brooks (2014). 

The proximity principle states (Figure 2.8, 1) that the distance between 

elements drives mental grouping. Elements that appear closer to each other are 

perceived as a group of a higher-order concept. The principle of similarity states 

(Figure 2.8, 2) that the higher the visual similarity of elements is the more likely they 

are regarded to be associated with each other and thus are seen as a group. Hereby, 

the degree of similarity heavily depends on the number of channels being different 

among the elements. The principle of prägnanz says that geometrically simple 

elements are favored over complex visual marks. As illustrated in Figure 2.8 (3), most 

people are likely to see two overlapping rotated rectangles rather than two complex 

non-overlapping polygons. The principle of common fate advocates that objects 

moving in the same direction will also form a mental group despites other principles 

such as proximity (Figure 2.8, 4). Another principle called closure states that closed 

objects, which are mentally connected to known concepts are favored over unknown 

open marks. As shown in Figure 2.8 (5) unconnected round lines that are centered 

around a common point are most unlikely seen as separated objects but united into 

an outlined circle. The principle of continuity is similar to prägnanz in that it states 

that visual marks are perceived as groups when following the form of the simplest 

line, indicting a possible trend or connection of the elements. The example from 

Figure 2.8 (6) shows points that form a cross. The principle argues that human’s are 

most likely seeing two trends that can be described as two intersecting straight lines 

instead of two trends that follow a convex and concave line. The principle of symmetry 

states that multiple symmetric marks positioned around a common center are 

interpreted as a single object (Figure 2.8, 7). The figure–ground principle describes the 

interplay of foreground and background. Whether a certain region is regarded to 

foreground or background depends on the composition of many different visual 

channels. Figure 2.8 (8) illustrates the famous face–cup paradox, in which two 

separate well-known concepts are ambiguously identified, since the foreground–
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background relation remains unclear. The principle of common region states that 

marks being enclosed by a line or are positioned in a homogeneously drawn region 

(e.g. same color or texture) tend to be perceived as a group of common elements 

(Figure 2.8, 9). Finally, the principle of connectedness expresses that elements which 

are connected by other similar elements–mostly lines–form a complex object or act 

as a group (Figure 2.8, 10). 

 

Figure 2.8: The ten Gestalt principle of perceptual grouping. The upper lines show the original 

visualization pictogram. The colored versions below illustrate the mental grouping by applying 

different hues (red and blue) to visualization primitives. The grey arrows used in common fate 

depict the direction of motion. 

As an abstraction of data, visualization’s ultimate goal is to highlight 

patterns for human users in a more efficient way than manual inspection of the raw 

data could. In this respect, good visualizations need to draw quick attention to the 

important details and help users locating specific elements. Salience is a property of 

how much an element pops out among a set of other visual marks. The greater 

salience is the easier it is for users to spot this mark. Salience itself can be expressed 

through any of the visual properties described above, i.e. mark type, channels or 

grouping. The effectiveness of salience depends on the overall composition of the 

visual properties used across the whole visualization. The more exclusive a property 

is the higher is its salience. Figure 2.9 illustrates some properties and how they 

convey salience. 
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Figure 2.9: Salience of marks. (1) High salience of the element in the third column and third 

row makes that element pop out from the rest of the visual marks. (2) The same element from 

(1) has been randomly relocated. Other elements use the same visual property but different 

characteristics, which makes it harder for the relocated element from (1) to pop out. 

2.2.1 Graph visualization 

Graph or network-based data is omnipresent and as such does the field of graph 

visualization span multiple different disciplines. Visualizing graphs and networks 

involves the visual representation of vertices or nodes, their relation or linkage, and 

optionally properties of them. Typical tasks involve the understanding of the network 

or graph topology, clustering of nodes and finding paths. Two idioms are most 

commonly used: node-link diagrams and adjacency matrices (Figure 2.10). 

 

Figure 2.10: Network visualization methods. (1) Node-link diagrams are used most commonly 

and can be categorized according to their layout algorithm. Popular layouts are: (1a) force-

directed, (1b) circular, or (1c) linear. (2) The adjacency matrix is a symmetric matrix ! where 

nodes are displayed as columns and rows. A link between node ! and ! is depicted as a grey 

square at position !!,! and !!,!. Adapted form Gehlenborg and Wong (2012). 

Node-link diagrams are putatively the most popular visualization method for 

drawing graphs. In their basic form node-link diagrams are comprised of point marks 

and lines, representing nodes and relations respectively. The position of nodes is 

generally unconstraint and depends on the layout algorithm (Figure 2.10, 1). Concerns 
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that play a role in choosing the layout algorithm are the number of edge crossings or 

the relative distance from a chosen root node. The layout can also be motivated by the 

data type to be visualized. For example, interactions between mitochondrial DNA 

might be visualized using a circular layout. Force-directed node-link diagrams are 

highly effective in representing the topology–due to the combination of proximity 

and connectedness. 

Matrix-based representations of graphs or networks show the relation of 

nodes via adjacency lists (Figure 2.10, 2). Matrix-based methods tend to be more 

scalable compared to node-link diagrams but do not convey the topology well. 

In the special case that the graph represents a tree, i.e. an undirected and 

acyclic graph, containment or enclosure idioms, such as tree maps, can be used as 

well. The web page http://treevis.net (Schulz, 2011) contains a large and up-to-date 

collection of the various kinds of tree visualizations. A subset of 2D visualization 

methods for trees is illustrated in Figure 2.11. 

 

Figure 2.11: Screenshot of current 2D visualization techniques for tree data. Adapted from 

TreeVis.net (Schulz, 2011). 

2.2.2 Set-typed visualization 

Often the data to be visualized is categorical or set-typed. One could even argue that 

any kind of data can be categorized according to some attribute. Attributes that define 

membership could literally be anything. For example, biomedical data can often be 

categorized by gender, measuring technology or some expression level interval. The 

main reason for visualizing set-typed data is to help the user understand the nature 

of categorization. 
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There are two different types of questions that are of key importance. First, 

questions about the member elements such as which element is contained in most 

sets or which element is always associated with a specific attribute. Second, questions 

about the sets themselves, such as the set’s size or relations between different sets 

like complement, containment, exclusion and intersection. Most often set-typed data 

visualization should facilitate answers about the membership across multiple 

different categories. Visualizing the membership of documents in different categories 

can help the user to quickly understand the nature of the data collection. 

Categorizing data is especially very useful for browsing a large collection of 

elements as it allows the user to filter down before inspecting the relevance for each 

element separately. Also, hierarchical sets, i.e. sets that include other sets, can 

provide a level of abstraction and keep exploration of many elements perceptually 

feasible. A thorough review of set-typed visualization techniques is provided by 

Alsallakh et al. (2014). 

The two most commonly used and oldest visualization techniques for set-

type data are Euler and Venn diagrams as shown in Figure 2.12 (1 & 2). Leonard Euler 

has invented Euler diagrams in the 18th century, while John Venn invented the 

similar Venn diagram in 1880. Both techniques visualize the membership of a 

collection of elements through closed circles of any shape drawn on a plane. Elements 

that belong to multiple sets are visualized by overlapping sets. The main difference 

between Euler and Venn diagrams is that Venn diagrams require 2! distinct zones for 

!  sets, even when some zones represent empty set intersections. The greatest 

advantage of Euler and Venn diagrams is that they are typically understood without 

any explanations due to the principle of common region (Palmer, 1992). Humans tend 

to perceive special partitioning more easily when depicted by closure than proximity or 

similarity. The biggest limitation of both techniques is that they do not scale well 

beyond four categories. Many variations of Euler and Venn diagrams have been 

proposed but all are based on the same concept of using closed areas to visually 

indicate set membership. Node-link diagrams are another way to visualize set-typed 

data (Figure 2.12, 3). The membership can either be shown by drawing links between 

elements and sets (Figure 2.12, 3a) or by drawing a direct link between members of a 

set (Figure 2.12, 3b) (Alper et al., 2011). Sometimes links are enlarge in such a way that 

they additionally include common region principle such as in Kelp diagrams (Dinkla et 

al., 2012) or Bubble sets (Collins et al., 2009). Techniques that solely rely on the 

common region principle are available too (Dinkla et al., 2014) (Oelke et al., 2014). A 

third approach to illustrate set-typed data is using matrix-based techniques. Matrix 

views are used in different ways to depict membership (Figure 2.12, 4). One way is to 

represent elements and sets by rows and columns and highlight a cell !!,! if element ! 
is part of set ! (Kim et al., 2007). Another visual metaphor used in matrix-based 

visualization is plotting sets as rows and columns and creating a heat map, which 

represents the overlap between sets (Sadana et al., 2014). Some approaches combines 
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different methods, such as UpSet (Lex et al., 2014), which uses a matrix where each 

column represents a set and each row depicts set combinations. 

 

Figure 2.12: Basic principles of set-typed visualization. (1 & 2) represent methods following the 

common region principle. (3) Node-link diagrams facilitate sets via connectedness. (4) Matrix 

diagrams depict sets via columns and membership via rows. 

2.3 Ontologies 
Originally, ontology is a field of philosophy that is concerned about the how objects of 

the real world can be formally described, grouped, and related to each other given 

their characteristics. The study of ontologies is hundreds of years old and is rooted in 

Greek philosophy. Tom Gruber established ontologies in the field of computer science 

in 1995 as a model for sharing knowledge (Gruber, 1995). Gruber also coined the 

famous and shortest known definition of ontology: 

“An ontology is a specification of a conceptualization.” 

Gruber (1993) 

Thus, ontologies–in the domain of computer science–can be regarded as a 

set of definition over a set of concepts described with controlled vocabularies. The 

goal is to facilitate reuse and sharing of knowledge. As such, ontologies are a powerful 

tool for annotation of documents as well as semantic queries. 

2.3.1 OBO and OWL 

The two dominant languages for creating biomedical-ontologies are Open Biomedical 

Ontologies (OBO) and Web Ontology Language (OWL). The OBO ontology language 

was originally developed by Gene Ontology (GO) consortium and later emerged into 

the OBO Foundry. OWL has been developed by the World Wide Web Consortium (W3C) 

to provide a general tool for modeling web-based ontologies with the Semantic Web 

(Berners-Lee and Hendler, 2001) in mind. Generally, OWL is more powerful and 

features richer descriptiveness than OBO, since OBO had been designed for bio-

ontologies only. 

The OBO ontology model consists of classes (also called terms), instances 

and relationships. Classes model types of objects or real-world concepts and 

instances of classes represent individual objects of a class. Relationships link classes 
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and instances with each other. The most important class relationship type is is_a 

between classes, describing the subclass relationship. Thus if B is_a A then all 

instances that are of type B are also of type A. Other important relationships defined 

by the OBO Relation Ontology are part_of, develops_from, and adjacent_to. In general, 

relationships can be directional, symmetric, transitive or cyclic. Also, certain 

relationships can be used to relate other relationships. For example, the relationship 

inverse_of can be used to model has_part as the inverse of part_of. OBO also defines 

domain and range related, indirect subclass relationships. For example, given the 

fictional relationship translated_by_RNA_polymerase, the domain (i.e. source class) 

could be defined as the class DNA while the range (i.e. target class) would be RNA. 

Given the statement A translated_by_RNA_polymerase B, we can be inferred that A 

is_a DNA and B is_a RNA. OBO supports a number of different metadata attributes 

such as an identifier, a name, synonyms, cross-references, definitions, comments or 

a namespace to be associated with a term, relation or instance. A term’s identifier is a 

strings in the form of IDSpace:ID, where IDSpace is the ontology’s acronym. E.g. 

CL:0000653 stands for term number 0000653 of the Cell Ontology (CL). 

OWL builds on top of the Resource Description Framework (RDF), which 

models the information about resources in the World Wide Web. In RDF information 

is defined as triples of the form: subject predicate object. Each triple defines a 

statement, i.e. one single piece of information. RDF statements can also be 

interpreted as a directed labeled graph with the subject representing the source node, 

the object being the target node and the predicate indicating the directed edge. 

(Figure 2.13, 1) The subject and predicate must be resources while the object can 

either be a resource or a literal value; e.g. string, number or Boolean. Resources are 

defined objects or concepts of any kind that are uniquely identifiable via a Uniform 

Resource Identifier (URI). Since RDF has been developed for the World Wide Web 

most resources correspond to web pages but they can literally be any kind of concept. 

Multiple RDF statements intrinsically form a directed, labeled, multi-relational 

graph. By itself RDF doesn’t impose any semantics and is merely a data model. RDF 

schema (RDFS) defines some basic vocabulary to create ontologies. Specifically, RDFS 

provides means to describe classes, properties (i.e. relationships), enables direct sub- 

and super classing, and indirectly exposing a class hierarchy via domain and range 

rules. By being able to create a class hierarchy, RDFS also provides inference of new 

statements that are implied by asserted statements. The most prominent inference is 

engendered by the transitive nature of the class hierarchy (Figure 2.13, 2). 
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Figure 2.13: Example and differences of RDF and RDFS. 

OWL is even more expressive compared to RDFS by extending the vocabulary 

and inference rules further. In addition to defining classes directly via a URI, it is 

possible to indirectly define classes via enumeration of all instances, property 

restrictions, intersections, union of multiple classes or the complement of another 

class. Especially property restrictions appear often in the biomedical domain. For 

example, the Cell Ontology (CL) has two essential object properties for expressing its 

class hierarchy: subClassOf and develops_from. The develops_from property is 

expressed by a property restriction. The following simplified expression is taken from 

CL and describes a typical develops_from relationship: 

 

1 <owl:Class rdf:about="CL:0000005"> 

2   <rdfs:label>fibroblast neural crest derived</rdfs:label> 

3   <rdfs:subClassOf> 

4     <owl:Restriction> 

5       <owl:onProperty rdf:resource="RO:0002202"/> 

6       <owl:someValuesFrom rdf:resource="CL:0000333"/> 

7     </owl:Restriction> 

8   </rdfs:subClassOf> 

9   <rdfs:subClassOf> 

10     <owl:Restriction> 

11       <owl:onProperty rdf:resource="RO:0002202"/> 

12       <owl:someValuesFrom rdf:resource="CL:0000008"/> 

13     </owl:Restriction> 

14   </rdfs:subClassOf> 

15 </owl:Class> 

 

Here the fibroblast neural crest derived cell (CL:0000005) is described to 

develop from (RO:0002202) the migratory neural crest cell (CL:0000333) in lines 3 to 7 
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and from the migratory cranial neural crest cell (CL:0000008) in lines 9 to 14. An 

extensive introduction to bio-ontologies is provided by Robinson and Bauer (2011). 

Currently the OBO Foundry (Smith et al., 2007) lists 137 ontologies and 

BioPortal (Whetzel et al., 2011) has 503 ontologies. The following twelve ontologies 

are used for data set annotation in this project: BRENDA Tissue and Enzyme Source 

Ontology (BTO), Chemical Entities of Biological Interest (CHEBI), Cell Ontology (CL), 

Experimental Factor Ontology (EFO), Foundational Model of Anatomy (FMA), Gene 

Ontology (GO), Mouse Adult Gross Anatomy (MA), NCBI Taxonomy (NCBITAXON), 

NCI Thesaurus (NCIT), Ontology for Biomedical Investigations (OBI), Phenotypic 

Quality  (PATO), and Units of Measurement (UO). 

2.4 Graph databases 
Most database management systems (DBMS) are based on a relational modeling 

where data is grouped by relations and organized by tuples. Colloquially, relations 

stand for tables, which define a set of attributes (i.e. columns). Every data entry 

represents a tuple of information. Usually each tuple is uniquely identifiable by a 

unique attribute set called keys. The greatest deficit when working with relational 

data, e.g. graphs, is that relational DBMS require joins for each relation to be 

retrieved, which can quickly become a serious issue when more than a few relations 

are assessed. Graph databases build upon relational DBMS by explicitly storing object 

relationships instead of inferring them at query time. This characteristic makes graph 

database more suitable for relation intensive queries. 

Neo4J (http://neo4j.com) is the graph DBMS that is being used throughout 

this project. It implements a property graph model, which consists of a graph 

! = (!,!), a set of vertices ! and a set of edges !. An edge ! ∈ !; !!, ! ∈ !; !! = (!, !) is an 

ordered pair of vertices representing a directed relationship from ! to !. Apart from a 

normal direct graph, vertices and edges of a property graph model can be associated 

with multiple key-value pairs. In addition, Neo4J adds labels and typed relationships 

to allow grouping of nodes. Even though relationships need to have a direction, the 

directionality does not matter. Neo4J allows traversing paths in any order. Figure 2.14 

provides an example property graph and summarizes the ideas described above. 
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Figure 2.14: Example property graph. Nodes and relationships can be associated with multiple 

key-value pairs. The key-value pairs follow no explicit schema. Nodes can be grouped into sets 

by assigning multiple labels. 

2.5 Related work 
Visualization of data repositories or large document collections have similar 

requirements and goals compared with efforts of visualizing search results, since 

search results represent an arbitrary subset of the document corpus. Additionally, 

search visualization incorporates the notion of relevance. Ontology-guided 

visualization of biological data repositories intersects with a number of different 

research areas. In an attempt to provide a comprehensive overview, related work is 

categorized into two main groups: problem-focused and visualization-focused 

methods. Problem-focused projects are mostly concerned about applied challenges 

while visualization-focused work is trying to enhance existing or develop new 

visualization methods for a broader spectrum of applications. 

Over the last two decades various different visualization methods have been 

developed to support search. The tools can be divided into those that attempt to 

visualize each result separately and those that try to provide an overview of the 

complete search results. For example, TileBars (Hearst, 1995) and successors Insyder 

(Reiterer et al., 2005) and HotMap (Hoeber and Yang, 2006) visualize the 

approximated location of query term matches within each retrieved document and 

thus provide a visual notion of relevance. Others illustrate the relative similarity of 

search results by depicting each retrieved document as a glyph or simple visual mark 

in a 2D or 3D space. The spatial location is determined via dimensionality reduction. 

Similar documents should cluster together and form fuzzy groups or categories. 

Examples for glyph-based visualization techniques that operate search results are 

InfoSky (Andrews et al., 2004) and xFind’s VisIslands (Andrews et al., 2001). InfoSky 

incorporates hierarchical classification of the documents and displays them in 
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circular weighted Voronoi tree maps. On the other hand, some visualization methods 

provide an abstract summary of the set of all retrieved documents. The 

RelationBrowser++ (Zhang and Marchionini, 2004) visualized the overall and search 

related abundance of categories using superimposed bar charts. The search engine 

Grokker1 hierarchically categorized search results and provided a top-down filter 

mechanism via a circular tree map of topics and subtopics. A tool called ResultMaps 

(Clarkson et al., 2009) groups search results according to a hierarchical classification 

and uses the tree map visualization to convey the hierarchy. Hearst (2009, see 

Chapter 10) provides a comprehensive overview of the efforts in visualizing search 

results. 

Apart from that, a number of projects studied possibilities to visually 

summarize the corpus data repositories and enable exploration. The following 

examples focus on visual exploratory tools that utilize metadata or descriptive 

vocabulary, i.e. tools that visualize categorized or set-typed data. InfoSky (Andrews et 

al., 2004) that has been described above can also be used to explore a whole collection 

of data. Hiérarchie (A. Smith et al., 2014) is a tool for visualizing hierarchical topic 

models using sunburst charts to explore text documents. In a similar fashion, 

Phenoblocks (Glueck et al., 2015) uses the SunBurst idiom to present the hierarchical 

structure of the Human Phenotype Ontology (Robinson et al., 2008). The SunBurst 

technique is basically a tree map laid out radially. Nils Gehlenborg has studied 

ontology-guided exploration of ArrayExpress (Kolesnikov et al., 2015) as part of his 

PhD dissertation. The prototype called ArrayExpress Explorer (Gehlenborg, 2010) uses 

the tree map idiom to visualize and query ArrayExpress’ content by means of the EFO 

(Malone et al., 2010). 

Other work that indirectly relates to this thesis is more focused on 

visualization techniques for graph, tree, or containment data. The variety of tree 

visualizations alone is huge. As mentioned in Chapter 2.2.1 Hans-Jörg Schulz 

maintains an extensive collection of numerous different visualization methods for 

tree data (Schulz, 2011) (Figure 2.11). Tree maps (Johnson and Shneiderman, 1991) are 

one of the most space efficient ways to visualize hierarchical data and have been 

studied extensively. A major disadvantage of tree maps is that they do not 

communicate the tree’s topology as well as node-link diagrams can. Elastic 

Hierarchies (Zhao et al., 2005) has been developed to combine the strength of node-

link diagrams and tree maps. GrouseFlocks (Archambault et al., 2008) is another 

attempt to combine the node-link idiom with circular tree maps. 

                                                   
1 Grokker had been shut down when Groxis ceased operation in 2009. The Internet Archive 

provides a copy of Grokker’s tour, which contains screenshots and explanation of their 

visualization tool. 

https://web.archive.org/web/20090509164021/http://www.groxis.com/service/grokker/grokker

_tour.html 
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3 Methods 
Throughout this project the what-why-how analysis framework developed by 

Brehmer and Munzner (2013)  and later refined by Munzner (2015, see Chapter 2, 3 & 

5) is used as a guidance for development. Hereby, what, why, and how correspond to 

the data abstraction, needs and tasks, and the decision for the visualization design. 

3.1 Data 
The data that is primarily being handled by the Refinery Platform as a case study 

comes from the Stem Cell Commons (Ho Sui et al., 2013). The Stem Cell Commons 

have been initiated by the Harvard Stem Cell Institute to facilitate comparison of 

stem cell experiments at the molecular and semantic level and provide a community 

based platform for sharing data. The data had been manually curated and annotated 

with twelve ontologies (Table 1) and is stored in the investigation-study-assay (ISA) 

model (Rocca-Serra et al., 2010). Up to date the Stem Cell Commons consist of 201 

data sets of which 199 are valid ISA-Tab files. 

 

Ontology 
Number of 

terms 

Number of data 

sets annotated at 

least once with 

the ontology 

(after importing) 

Number of times 

the ontology was 

used for 

annotation across 

all data sets 

Number of 

terms used 

for 

annotation 

BTO 5809 5 (5) 9217 3 

CHEBI 61550 144 (141) 22114 6 

CL 4789 101 (81) 6020 59 

EFO 17238 45 (198) 785 17 

FMA 103902 132 (0) 2351 22 

GO 44049 33 (32) 41 2 

MA 3229 3 (3) 22 2 

NCBITAXON 906907 201 (198) 4035 4 

NCIT 116762 59 (58) 749 10 

OBI 2932 201 (198) 462 9 

PATO 2457 6 (3) 8 1 

UO 331 58 (25) 14847 7 

Table 1: Ontology usage across Stem Cell Commons. The difference of ontology usage per data 

set between before and after importing is due overlaps among ontologies, e.g. the EFO covers 

almost all terms from other ontologies that have been used for annotation, and annotation 

issues, e.g. sometimes ISA-Tabs ontology sources and identifiers do not match. Note that the 

FMA annotations could not match any data set because of outdated identifiers. The FMA uses at 

least three kinds of URI schemas and while mapping is certainly possible, it is out of the scope 

of this thesis. 
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3.1.1 Data abstraction 

The goal of this project is to enhance exploration of biological data repositories by 

illustrating semantic relationships across the entire repository and search results. 

Since it is not the goal to visualize search or ontologies but their relationships the 

data needed to be abstracted to clarify their relationships. Each ISA file represents an 

investigation with studies and assays, each related by a one-to-many relationship, 

e.g. one investigation can have multiple studies and each study can host multiple 

assays. In terms of exploration a data sets is regarded as an atomic unit, meaning that 

this project only focuses on inter and not intra data set exploration. Thus, a data set 

can be seen as a set of raw data files (Figure 3.1, 1), which have been annotated with a 

set of ontology terms (Figure 3.1, 2). Additionally, studies and assay can have multiple 

annotations as well. Finally, only those ontology terms that are associated with data 

sets are of use for exploration. This leads to a complex annotation set hierarchy 

illustrated in Figure 3.1 (3). Terms that are not used for annotation and which are not 

compliant with equation 3.1 are removed. 

Therefore, the abstracted data to be visualized can be described as an 

ontology-guided containment multi-hierarchy. The transitive nature of subclass 

relationships defines the subsumptive containment hierarchy of ontology terms. E.g. 

the term podocyte is a subclass of epithelial cell, which in turn is a subclass of cell. 

Hence, podocyte is also a subclass of cell. In terms of data set exploration this means 

that any data set that has been annotated with podocyte should also be listed when the 

higher-level term cell is browsed. 

 

Figure 3.1: Abstract data model. (1) List of data sets. Each data set can consist of multiple raw 

data files. Raw data files, assays or studies can be annotated with ontology terms. (2) The 

original topology of the ontology used for annotation. (3) Compressed annotation set hierarchy. 

The four main branches are indicated by colored contour lines. The set hierarchy is not 

equivalent to a tree as some sets can be subsets of multiple other sets; e.g. N is a strict subset of 

G and C. 
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3.1.2 Data Processing 

Ontologies can be represented as directed, and in most cases acyclic, graphs. The 

most important property in terms of exploration is the number of data sets that are 

associated with an ontology term. Given a graph ! = (!,!) with ! representing the set 

of vertices and ! representing the set of edges linking two vertices, we denote the 

number of times a term ! has been used to annotate a data set as the size of the term 

related node !! . Since only real-world concepts should be illustrated, satisfiable 

classes are considered only, i.e. nodes that are reachable from the global root node 

OWL:Thing. By having a unique root node, we expose an indirect order on the node set. 

The length of the shortest path of a node ! to the root is defined as the distance of !. 

The ontologies used for annotation of data sets each describe a large domain 

but the actual terms that have been used for annotation are relatively few compared 

to the overall number of terms. For example, the Stem Cell Commons uses 142 out of 

1269955 terms only. Since the goal of an exploration tool is to provide means for 

finding data sets and understanding the composition of data collections, ontology 

terms that have not been used for annotations should not be shown unless they 

account for a stem to nodes of size greater than zero. Thus, to provide efficiently 

visualization methods the ontology graph needs to be pruned. A set is only of use if its 

size is different from its superset’s size. Mathematically this means that we need to 

ensure a strict containment set hierarchy. Given three terms !, ! and ! where ! is a 

subclass of ! and ! is a subclass of !. The terms’ set representation !!, !! and !! must 

be compliant with: 

 S! ⊂ !! ⊂ !! (3.1) 

In addition, the tree map visualization method conveys the hierarchical order 

by containment; data to be visualized needs to come in form of a tree rather than a 

graph. Although the list graph methodology use the visual metaphor of node-link 

diagrams, the hierarchy is illustrated by placing nodes from left (the root) to the right 

(leaves). Depending on the complexity of the graph, it is possible that a node could be 

placed in multiple different columns, as there might be different path to the very 

root. To avoid visual clutter links only go in one direction: from superclass (left) to 

subclass (right). Thus, nodes with multiple parents whose distance are not equal are 

duplicated. (Figure 3.2) 
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Figure 3.2: Graph manipulations. (1) Leafs and inner nodes of size zero are deleted. The 

cumulative size includes the sum of the size of all child nodes. (2) Node duplication for the tree 

map visualization. Inner nodes with a size greater zero need to be duplicated as child nodes to 

themselves. Also, nodes with multiple parents are duplicated for each parent to provide a 

unique path to the root. (3) The list graph visualization only requires nodes to be duplicated 

when their parents’ distances to the root are not the same. Therefore, node F is duplicated 

because the distance of node C and G is not equal. On the other hand, node G is not duplicated 

because the distance of nodes D and E is the same. 

3.2 Design 

3.2.1 Requirements & Tasks 

The first step in designing novel visualization methodologies is to compile a set of 

requirements that formalize the needs and tasks to be addressed. Requirements are 

often predefined to some degree by previous work and later refined by expert 

scientist working in the field of research associated with the problem. Therefore, 

prior to the requirements analysis the main target users need to be determined. In 

regards to exploration of biological data repositories, three primary and two 

secondary audiences have been identified: data scientists and analyst, project leaders, 

group leaders and funders, data curators, and developers. The five groups act as blue 

print characteristics for user roles with different needs regarding an exploration 

system. The roles are not meant to exclusively describe a user but rather the different 

roles a user can reflect. For example, a person can be a data scientist and project 

leader at the same time, having to fulfill two roles throughout the daily work. 

The primary concern of data scientists and analysts is how data can be 

turned into information and subsequently transformed into knowledge. Thus, 

exploiting raw data to gain insides in the underlying biology mechanisms is of key 

importance. The main focus of data scientists and analysts is to find the most 
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relevant data as quickly as possible. Precise description and meta-information of data 

sets is crucial in order to evaluate the relevance. The characteristics that define 

relevance can vary greatly depending on the project. The main goal for finding 

relevant data is to compile a data collection that can be analyzed to potentially 

answer specific biological questions. Data might also be needed to expand in-house 

generated data. Generally there are two categories of data to be collected: data that is 

highly similar or data that differs significantly in some respect to existing data. For 

example, more data might be needed to increase the overall quality and validity of a 

finding. Data that differs could foster confidence about the robustness of a novel 

method or it might act as a negative control. The data scientist’s exploration behavior 

is illustrated in Figure 3.3 (1). To summarize, the needs of data scientists and analysts 

are: 

N1 Find data sets that match experimental characteristics. 

N2 Find data sets that are similar or dissimilar to given data sets. 

The project leader stands for the role model of somebody who leads a 

research project. The focus of a project leader is to find suitable characteristics of data 

sets that are crucial in successfully addressing the scientific challenges of a project. 

The difference between the role of project leaders and data scientists is that project 

leaders are more concerned about the general state of research and availability of data 

that is closely related to the project instead of directly analyzing raw data. Therefore, 

a project leader needs an overview of a collection of data sets that matches 

experimental conditions (Figure 3.3, 2): 

N3 Get an overview of groups of data sets that match specific experimental 

conditions. 

The role of the group leader or funder represents a person who manages and 

leads a group of people or guides research fields. A group leader needs to have a 

vision how the past, current, and future research work ties together and what the 

overall goals are. Hence, project leaders constantly assess the current state of 

research, find trends, develop novel hypothesis, and strategies how to further 

contribute to the research field of interest. Even though funders are not directly 

involved in research project, they need to evaluate the current state of research and 

discover trends in order to make confident decision about how research fields can be 

shaped in a way that the funding organization’s goals and aspirations are best met. In 

conclusion both roles need to gain insights into the broader overview of a data 

collection to discover broader patterns. For an exploratory application, the most 

important requirement is to provide an overview over the whole or large parts of the 

repository (Figure 3.3, 3). 
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N4 Get an overview of the distribution the overall data collection or large subsets 

of it. 

Data curators are responsible for the quality of metadata and integration of 

data sets across the repository, such as ontology annotations. Their needs are 

resolving around the current state of curation and how it’s quality can be improved to 

increase the benefits of data. Data curators are not concerned in finding data sets or 

discovering trends in data generation but instead are interested in the overall 

distribution and usage of annotation terms. For example, while an overview of the 

term distribution describes the nature of the data collection it also gives insights in 

how well certain areas have been annotated. Reason for biased annotation diversity 

can be due to different annotation strategies over time or differently structured 

ontologies. It can also point out parts of ontologies that need further specifications. 

Observing those trends can facilitate better data curation (Figure 3.3 4). 

N5 Get an overview of the annotation set hierarchy. 

Finally, the developers of a biological data repository can benefit from an 

exploratory tool in order to evaluate the current usage of the system. This is needed 

to foresee future trends and plan appropriate changes ahead of time. Similar to group 

leaders and funder, their goal is not to find specific data sets or small collections of 

data sets but to understand the repository as a whole (Figure 3.3, 5). The need of 

developers in regards to an exploration system is very similar to N4; the major 

differences between developers, group leaders, or funders are the resulting actions 

only. 

 

Figure 3.3: Expected user exploration behavior. (1) Data scientists and analysts aim at locating 

specific data sets. (2) Project leaders focus on a small specific group of data sets that 

potentially help to answer their project’s biological questions. (3) Group leaders and funder 
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examine the bigger picture of the overall repository. Compared to project leaders they are less 

concerned about very specific details. (4) Data curators are primarily interested in annotations 

instead of data sets. (5) Developers care about the system as a whole to foresee trends in data 

generation. 

The specific requirements are derived from the set of needs of the different 

roles from above. All needs require some degree of understanding of subsets of the 

repository. Subsets can either be retrieved through search or though term-based 

browsing and querying. Understanding the composition of characteristics, i.e. 

annotations, is crucial for understanding if and what to explore next. Hence, the 

requirements are separated in those that describe the needs for understanding set 

composition and those that are needed to successfully explore the data repository. 

The following tasks are related to understanding and sensemaking of data collections: 

T1 Determine annotation terms of a data set. 

T2 Determine abundance of annotation terms of a group of data sets. 

T3 Determine abundance of sets of annotation terms among a group of data sets. 

T4 Determine annotation term containment relationships. 

T5 Preview data set’s content. 

The notion of relevant data sets (N1), i.e. data sets that significantly match a 

desired experimental setup, can be achieved through the illustration of annotations 

(T1) and by previewing a data set (T5). Showing the relationship between the ontology 

terms (T4) that have been used for annotation can facilitate finding of related data 

sets (N2). The abundance of single ontology terms (T2) and sets of ontology terms 

(T3) aids understanding of search results and highlights patterns (N3, N4, N5). 

Previewing certain details of a data set (T5) can further increase or decrease relevance 

and help to find the desired data (N1, N2). 

The following tasks are related to the process of actively exploring data 

collections: 

T6 Search for data sets. 

T7 Query data repository by annotation term. 

T8 Filter down a group of data sets according some annotation. 

T9 Loosen annotation constraints. 

Being able to search (T6) by keywords and query (T7) by ontology terms for 

data sets is crucial in finding specific data sets as well as groups of data sets (N1, N2, 

N3, N4). Drilling down search results by filtering according to some annotation terms 

(T8) and drilling up by loosening constraints (T9) supports exploration through an 

enriched search. Ranking annotations according to their abundance and size enhances 

both: understanding of the nature of data sets (N3, N4, N5) by highlighting most 
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abundant or most scarce terms, and facilitates exploration by providing a notion of 

information scent (Pirolli et al., 2000): 

T10 Rank annotations. 

3.2.2 Interviews 

Over the course of this project a small series of semi-structured interviews with data 

scientists have been performed in order to better understand how users actually 

search for data and to guide the design process. There are several ways to assess 

which information is most important for the personal relevance of data. The two 

main categories to distinguish are qualitative research and quantitative research. 

Qualitative research in terms of the design process can help to understand the 

problem and facilitate hypothesis generation. On the other hand, quantitative 

research is often used to verify or compare hypothesis. For this project semi-

structured interviews have been chosen because the goal is to gain insights in search 

behavior to assist further design processes rather than validating a final approach. 

Semi-structured interviews offer a balance between open-ended and structured 

interviews. The interviews have been guided by the following questionnaire: 

Q1 Do you usually start searching at (a) a data repository such as GEO or 

ArrayExpress, (b) a scientific journal database such as PubMed, or (c) both 

depending on the context? 

Q1.1 In case of Q1.b: Do you usually read the whole paper or is the abstract (plus 

figures) sufficient for searching? 

Q2 Briefly describe how you find relevant data through the steps described in 

Q1. 

Q3 Rate the following characteristics of a data set or study by (a) importance 

and (b) how frequently it is important in regards to the relevance for search 

from 1 to 5 (1 = irrelevant | never; 2 = rarely important | rarely; 3 = helpful | 

sometimes; 4 = important | often; 5 = essential | always): 

1. Technology 

2. Sample size 

3. Replicates 

4. Data quality 

5. Species 

6. Organ or tissue 

7. Cell type 

8. Disease 

9. Cell line 

10. Marker genes 

11. Protocol 



 33 

12. Original problem or goal 

13. Publication date 

14. Generating laboratory or group 

15. Prominence or awareness 

16. Technical popularity 

Q4 Are there other characteristics that are important to the relevance of a data 

set during search? 

Q5 What are your primary purposes when searching for data? 

Q6 Do you usually start your search (a) with a precise search query and loosen 

constraints, e.g. by reformulation when you cannot find anything relevant, 

or (b) with a broader search query and then specify the query? 

Q7 Would it be useful to have an indicator of the number of data sets related to 

a certain category, which has only been found partially? E.g. a search for 

“liver” might not return all data sets related to “hepatic lobule” or 

“hepatocyte”. 

The first question (Q1) helps to shed light on current usage of web-based 

data repositories and whether users have a general preference in searching data. 

Question 1.1 is an extension to the first question and is used to provide an estimate for 

how important a published manuscript is in regards to the data. The second question 

(Q2) is an informal follow-up to the previous two questions and is used to get an idea 

about the general search behavior of data scientist and analysts and is supposed to 

give insights in the different steps taken during search. Even though the search 

process is not assumed to vary significantly from what is already known, having an 

overview of the users’ practices and preferences can be useful to ensure successful 

adoption of a new exploration system. The next question (Q3) is most structured and 

part of the questionnaire in order to assess importance of different experimental 

factors and meta-characteristics of a data set for relevance. Items Q3.1–Q3.4 are 

related to the technical aspect of a data set. The next six items (Q3.5–Q3.10) describe 

common characteristics of the biological sample. The last five aspects (Q3.11–Q3.14) 

reflect meta-characteristics of the overall study and laboratory that conducted the 

project. Question Q3.15 is about the overall prominence of a data set, the researchers 

behind the project or any other characteristic. In Q3.16 popularity is regarded as the 

number of views, downloads or analysis that have been run on a data set. 

In total nine data scientists have been interviewed. Due to the small number 

of participants, the results presented here should be regarded as an indicator only. 

Regarding the starting point for search (Q1), every interviewee indicated to start 

searching for biological data by means of literature search at common literature 

databases such as PubMed. Four out of nine researchers stated that this is their only 

way of searching, while the other five data scientists said that they sometimes start a 

search directly at a data repository when looking for specific data types; e.g. large 
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consortium data like The Cancer Genome Atlas (Koboldt et al., 2012) or the Genotype-

Tissue Expression (Lonsdale et al., 2013). When starting the search at a literature 

database, six out of the nine people indicated that they will focus on the authors, 

abstract and figures first and read the whole paper only if necessary to understand 

the data (Q1.1). They might also choose to read the whole paper regardless of the 

search process when it is of general interest. The other three scientists mentioned 

that they read the whole paper before downloading any data. The next question 

provided insights into putatively common search patterns. Three interviewees stated 

that when they are looking for large consortium data they normally go directly to the 

consortium’s website directly since they know the data already or the general 

publication does not provide much information. On the other hand, when looking for 

data that has been generated by individual laboratories they tend to find the 

publication first in order to understand the data and find its location. One researcher 

mentioned that a publication also serves as a basic quality control, i.e. data without a 

publication appears to be less trustworthy. Question 3 highlights two aspects of the 

important characteristics of a data set during search: first, the importance heavily 

depends on the project and second, some characteristics are generally more relevant 

than others. According to Q3, key criteria for relevance of data sets are: technology, 

data quality, species and tissue. Furthermore, cell type, disease state, cell line and 

prominence have been highly rated. Characteristics are regarded to be important when 

at least more than half of the people consider it to be essential and more than two 

third of the interviewees consider this criterion to be of importance frequently. The 

results are also interesting as they showed differences between researchers trained or 

working in wet laboratories and dry laboratories. Harald Stachelscheid–an induced 

pluripotent stem (iPS) cell core facility group leader–mentioned the importance of 

marker gene expressions and differentiation or reprogramming protocols in iPS cell 

research but both characteristics have not been regarded as highly import by the nine 

computational data scientists. Table 2 provides an overview of the mean ratings, box 

percentages, standard deviation, Z-score and percentile of each sub question. Other 

characteristics (Q4) mentioned by interviewees are the connection between the user 

who is searching and the laboratory that publish or generated the data, the absolute 

proximity of the data to the user’s laboratory and journal information in which the 

data set has been published. The information regarding connections between the user 

and authors is closely related to Q3.14. According to the data scientist, proximity is 

important for wet laboratory-related research as it makes potential cooperation 

easier. The journal in which data sets have been published acts as a quality indicator 

(Q3.4). Question five (Q5) was included to better understand what kind of data sets 

scientists are targeting in search. Apart from the fact that data scientists who do not 

have in-house generated data need to collect data prior to analyses, all researchers 

mentioned that they search for data that is similar in regards to most characteristics 

but differs in respect to few attributes in order to compare results. Four data 
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scientists mentioned that they sometimes search for data that is highly similar in all 

ways in order compare the quality among data sets. Question 6 indicated that both 

exploration principles–drill-down and drill-up–are important but a majority of 

interviewees prefers to start with a specific search query and only loosens constraints 

when no relevant data has been found. One data scientist uses the same tactic when 

looking for one specific data set but starts with a generic query and drills down when 

composing a collection of multiple data sets. Two interviewees mentioned that they 

also start with a generic search by means of finding a review paper if the targeted 

area of research is unfamiliar. One researcher stated that her search tactic heavily 

depends on the previous experience. The researcher either chooses to start specific 

and drill up or to start generic and drill down depending a personal estimation of the 

search efficiency. In regards to the last question (Q7), five scientists stated that it 

might help to have an estimate of undiscovered data that is still closely related but 

broader. Two people answered that they are not sure how much this kind of metric 

would help during search but are curious to test it. The other two researchers have 

been unable to answer this question. 
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Q3.1 Q3.2 Q3.3 Q3.4 Q3.5 Q3.6 Q3.7 Q3.8 

 IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ 
Mean 4.4 4.4 3.3 3.3 3.3 3.8 4,7 4.9 4,4 4.6 4,0 4.8 3,8 4.3 4,1 4.1 

5 56% 56% 11% 22% 22% 33% 89% 89% 56% 67% 63% 75% 33% 33% 44% 56% 
4 33% 33% 33% 11% 22% 33% 0% 11% 33% 22% 13% 25% 33% 67% 33% 11% 
3 11% 11% 33% 44% 22% 11% 0% 0% 11% 11% 0% 0% 22% 0% 11% 22% 
2 0% 0% 22% 22% 33% 22% 11% 0% 0% 0% 13% 0% 0% 0% 11% 11% 
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 13% 0% 11% 0% 0% 0% 

5 & 4 89% 89% 44% 33% 44% 67% 89% 100% 89% 89% 75% 100% 67% 100% 78% 67% 
2 & 3 11% 11% 56% 67% 56% 33% 11% 0% 11% 11% 13% 0% 22% 0% 22% 33% 

SD 0.73 0.73 1.00 1.12 1.22 1.20 1.00 0.33 0.73 0.73 1.60 0.46 1.30 0.50 1.05 1.17 
Z-score 1.37 1.37 -0.11 -0.10 -0.09 0.27 1.22 4.32 1.37 1.53 0.34 2.81 0.25 1.77 0.63 0.57 

Percentile 92% 92% 45% 46% 46% 61% 89% 100% 92% 94% 63% 100% 60% 96% 74% 72% 

 Q3.9 Q3.10 Q3.11 Q3.12 Q3.13 Q3.14 Q3.15 Q3.16 

 IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ 
Mean 3.3 4.1 1.9 4.2 3.0 4.2 3.0 3.8 3.0 3.4 3.0 4.1 3.2 4.3 2.7 4.4 

5 11% 22% 0% 56% 0% 44% 11% 44% 22% 14% 0% 33% 0% 44% 0% 56% 
4 44% 67% 11% 22% 44% 33% 11% 11% 22% 29% 33% 44% 56% 44% 22% 33% 
3 22% 11% 11% 11% 22% 22% 44% 22% 11% 43% 33% 22% 11% 11% 33% 11% 
2 11% 0% 33% 11% 22% 0% 33% 22% 22% 14% 33% 0% 33% 0% 33% 0% 
1 11% 0% 44% 0% 11% 0% 0% 0% 22% 0% 0% 0% 0% 0% 11% 0% 

5 & 4 56% 89% 11% 78% 44% 78% 22% 56% 44% 43% 33% 78% 56% 89% 22% 89% 
2 & 3 33% 11% 44% 22% 44% 22% 78% 44% 33% 57% 67% 22% 44% 11% 67% 11% 

SD 1.22 0.60 1.05 1.09 1.12 0.83 1.00 1.30 1.58 0.98 0.87 0.78 0.97 0.71 1.00 0.73 
Z-score -0.09 1.10 -1.48 0.71 -0.40 0.93 -0.45 0.25 -0.28 -0.02 -0.52 0.85 -0.23 1.25 -0.78 1.37 

Percentile 46% 87% 7% 76% 34% 82% 33% 60% 39% 49% 30% 80% 41% 89% 22% 92% 

Table 2: Evaluation of data set characteristics. IMP stands for importance and FREQ stands for frequency. Marks 4 and 5 have been combined as an indicator for 

general importance and marks 2 and 3 have been combined to represent minor importance. The Z-score is based on the overall mean of importance and 

frequency ratings.
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3.2.3 Tree map 

Tree maps (Johnson and Shneiderman, 1991) are a 2D space-filling visualization 

technique for hierarchical data that provides an concise overview of set sizes (N4). 

The design decisions described in this chapter build upon ideas presented in Nils 

Gehlenborgs PhD thesis (Gehlenborg, 2010). The tree map visualization technique is 

only able to handle mono hierarchies or trees, i.e. each nodes of the hierarchy can 

only have exactly one parent. Each node !  of the hierarchical data is visually 

represented by a rectangular !!. Each rectangular !! is associated to a size !"#!! !!  of a 

node property !; e.g. for set-typed hierarchical data this can be the set size (T2). But 

any other value can be chosen as well. For inner nodes !!! the rectangle’s area is 

equivalent to the subsumed size of the node’s children’s sizes, i.e. 

!"#$(!!!) = !"#$(!!!)!  where !!!  represents the children. In order to successfully 

visualize a directed graph as a tree map, the graph needs to be transformed as 

described in Figure 3.2 (2). An example transformation and visualization is given in 

Figure 3.4. 

 

Figure 3.4: Graph to tree and tree to tree map conversions. For simplicity edge directions have 

been omitted. All edges are directed top-down and represent superclass to subclass 

relationships. (1) Node duplication per superclass, e.g. F is duplicated. (2) The tree map 

visualization technique represents the parent as a common area of the children and thus 

cannot be larger than the sum of the area of its children. Therefore, any node with a direct size, 

such as node C, needs to be cloned as a child of itself in order to visually accommodate its true 

size. (3) Example drawing of the ordered tree map of the final tree. 

In regards to ontology-guided exploration the graph structure to be 

visualized is the pruned containment set hierarchy derived from the original ontology 

(Chapter 3.1.3). The number of data sets that have been annotated with a term is used 

as the property to be visualized by size. Originally the tree map visualization focused 

on the presentation of the whole tree, effectively only showing leafs. Since even a 

single ontology can have tens of thousands of terms it is not useful to show all leafs 
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at once. Therefore, recursive zooming is added. Hereby, the tree map layout is only 

constructed up to a certain depth and all nodes at that depth are considered to be a 

leaf. There are two ways to zoom into a tree map: branch-based zooming and level-

based zooming. In branch-based zooming the user selects one of the rectangles as the 

new root node. The zoomed tree map then lays out in respect to the newly selected 

root node (Figure 3.5, 2). In level-based zooming the visible depth is increased; 

hence, showing farther nodes (Figure 3.5, 3). Providing means of zooming is 

important to address the user’s needs to gain an overview at different levels of detail 

(N3 & N4). 

 

Figure 3.5: Tree map zoom. (1) Tree map showing the first level of child nodes of root A. Nodes 

with a light dark border and bold font indicate inner nodes. (2) Branch B has been zoomed in 

and now reflects a new tree map with the root being B and subsequently being F. (3) The visible 

levels of the original tree map has been increase from one to two and two to three, showing all 

inner nodes at this level and all leaf nodes up to this level. 

In addition to the node’s size, a second numerical property can be illustrated 

simultaneously by manipulation of another channel. Since tree maps already use size 

(i.e. area), position, and shape, there are only a few channels left such as color and 

motion. Motion is an highly effective channel to make an element pop out from the 

its surrounding when used sparsely but it quickly looses it’s effectiveness when used 

often. It is also hard to recognize subtle differences in movement to judge the 

numerical value behind it. Therefore, color luminance, saturation and hue are better 

suited for visualizing a numerical value. Hue can be effective for continuous regions 

but is less well suited for comparisons across different spatial regions–as it is the 

case for tree maps. Also, hue is more effective to illustrate categorical data. 

Gehlenborg (2010) successfully used a branch color scheme in order to 

simultaneously visualize categories. Figures 3.4 and 3.5 show branch coloring by 

alternating the color’s hue. This can be an effective tool in distinguishing different 

branches. A problem arises when the number of possible starting branches is too high 

or too low or when the starting branches are not well defined. Since this project does 

not aim at a very specific ontology but uses all or a subset of various ontologies for 
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visualization, it cannot be guaranteed that the initial branches truly mark different 

categories. Also, the final tree structure heavily depends on the annotations; some of 

the branches at the first level might not correspond the original categories due to 

pruning. Furthermore, introducing several hues comes at the expense of decreasing 

the salience effect of color for highlighting annotations when the user interacts with 

either the visualization or the list of data sets. Finally, luminance and hue are no 

independent channels and their perceived value heavily depends on the context in 

which they appear. To conclude, a grey scale is suited best for luminance comparison 

between different spatial regions and the color channel’s salience remains high for 

highlighting nodes that the user interacts with. In respect to exploration the longest 

path from a node to its descendant leaf nodes is visualized using a restricted grey 

scale to indicate the size of the hidden explorable space (Figure 3.6). The grey scale 

ranges from a light grey that is used for leaf nodes to a dark grey used for nodes that 

are far away from leafs. Both extremes–black and white–are not used. White is 

already used as a background color and black is spared for the sake of highlighting 

nodes in interactions. In addition to the luminance, inner nodes are visually separated 

from leafs by adding a subtle border. The difference between the grey of a leaf nodes 

and nodes with one child node can be hard to perceive. A border helps to distinguish 

between nodes than provide further exploration options from leafs that mark the end 

of the exploration process in terms of annotation specificity. The coloring schema for 

text incorporates the Web Content Accessibility Guidelines (WCAG) 2.02 contrast ratio 

between a rectangle’s background color and black or white to ensure the highest 

legibility of labels possible (Figure 3.4, 3.5, and 3.6). The guideline is a W3C 

recommendation and provides a formula to approximate the perceived contrast 

between two colors, which is not equal to their technical contrast level. Additionally, 

in order to be able to distinguish between different branches, the space between 

rectangle increases by the distance to the common ancestor node and subtly conveys 

the class hierarchy (T4). For example, in Figure 3.6 (2) the common ancestor of A.1 

and B.1 is the root node and for both nodes the distance to the root is two. On the 

other hand, the common ancestor of A.1 and A.2 is A. The distance between A.1 and A.2 

to A is only one. Therefore, A.1 and A.2 are placed closer together than A.1 and B.1. 

According to the Gestalt principles discussed in Chapter 2.2, proximity provides a 

notion of togetherness, helping users to mentally group elements. 

                                                   
2 https://www.w3.org/TR/WCAG20/ 
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Figure 3.6: Tree map coloring, labeling and spacing. 

The principles of the tree map visualization method have not changed much 

since their discovery (Johnson and Shneiderman, 1991). Most work related to this 

technique went into layout algorithms. The algorithms mostly differ in the average 

aspect ratio of the rectangle they generate, the spatial stability, and their ability to 

preserve the input order of nodes. The most commonly used algorithms are slice-and-

dice (Johnson and Shneiderman, 1991), Squarified (Bruls et al., 2000) and Generalized 

Treemaps (Vliegen et al., 2006). Generally the desired aspect ratio should be low and 

both the spatial stability and ordering are ideally high but the three characteristics 

are negatively correlated. Also, a low aspect ratio can harm legibility (Bederson et al., 

2002), e.g. if text labels are longer than the rectangle, a line break needs to be 

introduced or the label is cut off. Higher aspect ratios allow for longer labels but too 

high aspect ratios make it harder to perceive the correct node size. In this project the 

Squarified tree map algorithm is used, given its relatively high stability and the low 

aspect ratio. Technically the tree map visualization does not need to be rectangular as 

demonstrated by Vliegen et al. (2006) but other shapes decrease space efficiency and 

introduce distorted shapes which size is harder to estimate. Additionally, having a 

rectangular layout adds the benefit of a natural element flow from the top left to the 

bottom right, which can be used to order rectangles according to their size. 

3.2.4 List graph 

The list graph is a novel visualization algorithm for flat horizontal node-link 

diagrams where each column or level can be seen as a list of nodes. The data to be 

visualized is the same as for the tree map, i.e. directed graphs that describe a 

containment hierarchy. The main difference to an ordinary node-link diagram is that 

the list graph requires a strict direction of node relationships. For example, given 

subclass relationships between ontology terms, it must hold that for all classes their 

superclass is positioned only left or only right but not both. For this project the root 

node is always located on the left and nodes representing subclasses are positioned to 

the right. Related nodes are visually linked via lines to convey the hierarchy (T4). 
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Another major difference is that nodes are aligned to the top instead of being 

centered vertically. The list graph’s main purpose is to visualize ontology term 

abundance among a collection of data sets in regards to precision and recall to give an 

estimate of the most important annotations. The rational is that the term lists should 

act like ranked lists of search result; hence, the most relevant terms should be shown 

first. The benefit of this approach is that the user does not need to familiarize with a 

new concept since ranked list are omnipresent in search result interfaces and most 

file browsers. This aspect is considered to be highly important since new visualization 

techniques introduce new cognitive load and can be time consuming to understand, 

which might limit their use during the search process. While aligning nodes to the top 

does not make the overall visualization more space efficient but it can significantly 

decrease the space consumption for the top most important annotation terms. 

Similarly to the idea of (Pickens et al., 2008) to distinguish between the retrieved 

search results and the results the user is actively looking at, the list graph is supposed 

to be an add-on visualization that provides relevant information regarding search in 

a limited amount of space. Since users have been found to focus on the first couple of 

search results only (Hotchkiss et al., 2007), the same can be expected to hold for 

supportive search visualization techniques. For example, in Figure 3.7 the horizontal 

(2) and list-like (3) node-link diagram consume the same overall space as indicated 

by the grey border. In case the display space is limited only a fraction of the diagram 

is visible (shown by the dashed red border) and the space efficiency of the list-like 

node-link diagram is higher. Assuming that the nodes are sorted by relevance it is 

obvious why it is desirable to see as many top nodes as possible. Having higher space 

efficiency in terms of the relevant nodes that are visible, clearly comes at the cost of 

comprehensibility of the graph topology; the vertical (1) and horizontal (2) node-link 

diagrams better convey the topology compared to (3). Yet the topology of the list-like 

node-link diagram is still easier to grasp than the tree map’s containment technique 

(N5). In addition to aligning nodes to the top, the list graph adds level dependent 

scroll bars to each level of nodes that exceeds the visible container. Here, a level 

corresponds to all nodes that have the same distance to the root. The usefulness of 

scroll bars has been studied by (Song et al., 2010), which showed favorable results for 

a scroll bar to limit large fan-outs. 

 

Figure 3.7: Layout comparison of node-link diagrams. Node size and spacing is constant among 

all three layouts. 
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The list graph focuses on the visual representation of two search metrics: the 

percentage of data sets retrieved with a specific annotation in relation to all retrieved 

data sets and the number of data sets with a specific annotated retrieved in relation to 

the overall number of data sets with that specific annotation. The first can be 

interpreted as precision and the latter represents recall. The list graph visualizes 

these two properties using superimposed bar charts (Figure 3.8). The list graph allows 

the user to sort each level of nodes, i.e. nodes with the same distance to the root node, 

according to these two properties (T10). In order to indicate which property a column 

is currently sorted by, a bar can be active or inactive. The visual representation of the 

active and inactive state depends on two bar chart modes (Figure 3.8, 1 & 2). The 

rational for having two modes is two-folded: First, having one bar compared to two is 

less distracting and reduces the cognitive load. On the other hand, it is harder to see 

the value of the inactive property that is only indicated by a superimposed vertical 

line, hence when both values are important two bars are favorable. The other reason 

for having two modes is that the final exploration tool should be beneficial for both: 

search and browsing. When browsing data according to ontology annotations, recall is 

always equal to one and thus does not need to be shown. In conclusion, having one 

bar is ideal for browsing while two bars are preferable during search. The reason for 

choosing bar charts is due to their high effectiveness for numerical data 

representation, especially when they are aligned and scaled–as it is the case for the 

list graph. Superimposing the bars over the nodes has the benefit of reduced space 

consumption, which is crucial as the overall screen space is limited. 

 

Figure 3.8: Term property visualization via superimposed bar charts. Currently two modes are 

supported: (1) Precision is set as the active property and its related bar makes up the whole 

node. Recall–the currently inactive property–is indicated as a superimposed line. (2) The two 

properties are visualized using two separate superimposed bars within the same node where 

each bar takes up half of the node’s height. The active bar is filled with a slightly darker grey 

compared to the inactive bar. 
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A term’s precision visualization and the size of its rectangle in a tree map are 

strongly related since both convey the relative abundance of data sets annotated with 

a term. The main difference is that the list graph can depict precision in relation to a 

fixed area while the tree map visualizes the ratio among all rectangles such that the 

total area is used. Figure 3.9 illustrates the difference between the tree map’s and list 

graph’s property visualization principles. In both cases (1) and (2) the total number of 

data sets that have been annotated with some ontology terms is equal to six and the 

number of data sets associated with term A is the same. While the tree map looks 

identical, the list graph’s superimposed bar chart conveys the relative abundance of 

each term. The tree map does not provide any insights into the intersection of 

annotated data sets. As a data set can consist of multiple studies with different assays 

of various raw data files the intersection of term-related data collections can be high, 

especially the more generic a term is. 

 

Figure 3.9: Tree map versus list graph. The size of the tree map’s rectangles is compared to the 

list graph’s precision bars. 

Visualizing precision and recall can help to understand the outcome of a 

search in regards to ontology annotation terms. Figure 3.10 illustrates four general 

cases of a search in respect to one annotation term. The first case (Figure 3.10, 1) 

shows that the text-based search almost perfectly retrieved data sets of a certain 

characteristic, i.e. precision and recall are high. This can either be an indicator that 

the search process can be stopped, to further drill-down via annotation term 

filtering, or by further specifying the search query. In the second case (Figure 3.10, 2) 

the search returns documents that still match the annotation term perfectly in terms 

of precision but is too specific to match all data sets that have been annotated with 

this term. If this annotation term is of desire then a possible action could be to loosen 

constraints by generalizing the search query. In the third case (Figure 3.10, 3) all data 

sets of the specific annotation term are retrieved but this characteristic is not very 

specific in regards to the search query, i.e. recall is high but precision is low. Further 

specifying the search query or filtering down the search by ontology-guided quarying 

can help to exclude irrelevant results. In the final case (Figure 3.10, 4) the search 
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query is unspecific to the illustrated annotation term. Recall and precision are low. In 

this case a more thorough revision of the search query might be needed. 

 

Figure 3.10: Different search result outcomes. The large rectangle represents the data 

repository. Contained circles stand for data sets. The area shaded in light red indicates data sets 

that have been annotated with a specific ontology term of interest. The inner rectangle or circle 

bordered in black illustrates search results. The light grey area stands for retrieved data sets 

that have not been annotated with the specific term, while the area filled with saturated red 

contains retrieved data sets with the desired annotation term. 

3.2.5 Preview 

When exploring data collections with the goal of finding relevant data (N1, N2) it is 

desirable to have a quick way to obtain a summary of a data set’s content in order to 

verify whether this data set is really relevant or not (T5). Previewing the content of a 

data set can be achieved in many different ways. Important aspects to be considered 

are speed, simplicity and context preservation. Previewing a data set’s content should 

be faster than opening the data set; otherwise the preview does not add any value. 

Simplicity relates to the actions needed to open the preview; i.e. the fewer actions 

needed the better. Context preservation helps to keep the cognitive load low when 

scanning the summarized content and returning to the search results. By keeping 

these aspects in mind, the data set preview has been integrated into the search 

interface as a slide-in window that is visually linked to the search results and the data 

set being previewed. Figure 3.11 illustrates the integration. A click on the right arrow 

on the right of a search result will slide in a preview panel, which in turn pushes out 

other content. The whole process is animated to assist comprehension of the 

transition. Keeping the search results visible at all times helps to preserve the current 

context. In general, the search interface is not altered in any way when previewing a 

data set’s content. 
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Figure 3.11: Data set preview integration. 

The composition of the preview’s content has been designed with the 

findings of the interviews (Chapter 3.2.2) in mind. The following metadata is shown in 

the given order: 

1. Short description 

2. Technology & measurement type 

3. Sample source & species 

4. Number of files 

5. Analyses that have been run on the data set 

6. Reference: title, authors, journal, manuscript source, PubMed and abstract 

7. Wet and dry laboratory protocols 

3.2.6 Interactions 

The three aspects of data set exploration described in Chapters 3.2.3, 3.2.4 and 3.2.5 

are combined with powerful text-based search (T6) to form the final exploration 

system to enhance findability and discoverability (N1). Figure 3.12 illustrates an early 

mock-up of the integrated interface. The list of results (Figure 3.12, 1a), list graph 

(Figure 3.12, 2a) and tree map (Figure 3.12, 2b) are linked via user interactions. 

Hovering over elements of either panel will highlight the related parts in the other 

two panels. The following is a list of interaction tasks: 

I1 Hovering over a search result should highlights the corresponding 

annotation terms of this data set. (T1) 

I2 Hovering over a node of the list graph or rectangle of the tree map should 

highlights all currently retrieved data sets that have been annotated with 

this term. 

I3 The relative root of the tree map should be adjustable; i.e. zooming by 
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branch, and being reflected in the list graph. 

I4 The visible depth of the tree map should be easily adjustable. 

I5 Term highlighting should be lockable to allow comparison of different 

terms. 

I6 The list graph should be scrollable by level and globally draggable and 

zoomable to uncover hidden areas. 

 

Figure 3.12: Early mock-up of the final exploration interface. (1) Search panel with query input 

field and results list (1a). Each retrieved data set is represented by an item in the list, consisting 

of (1b) its title, a very brief description and a button for previewing the data set. (2) Exploration 

panel comprised of the two visualization methods: the list graph (2a) and tree map (2b). The 

tree map panel includes a linked node list of the path from the absolute root term to the 

currently viewed root term. 

3.3 Implementation 
The exploration system is integrated into the Refinery Platform (http://refinery-

platform.org), which consists of server-side back-end storage applications, a 

middleware controller application and a client-side front-end application. The 

middleware application is the central part that connects the different components 

and manages the logic. It is written in Python and builds upon the Django framework 

(http://djangoproject.com). PostgreSQL (http://postgresql.org)–a widely used open-

source relational DBMS–is the main data storage for the Refinery Platform. It is 

complemented by Neo4J’s graph database (http://neo4j.com), which additionally 

stores ontologies and annotation data. Solr (https://lucene.apache.org/solr) is being 

used as the IR system to provide a Google-like search experience. The server-side 

storage and IR systems feature application programming interfaces that support the 

representational state transfer architecture and communicate via JavaScript object 

notation messages. Communication is routed through the middleware application to 
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normalize requests. The front-end application handles most of the user interactions 

and utilizes AngularJS (http://angularjs.org) to provide a rich user experience. 

Visualizations are implemented in Hypertext Markup Language 5, Cascading Style 

Sheets 3 and Scalable Vector Graphics and are mainly orchestrated by JavaScript (JS) 

and Data-Driven Documents (Bostock et al., 2011). The AngularJS architecture is 

similar to the server-side middleware application as it ties together the different 

visualizations and other user interface components and manages the information and 

event flow. The front-end application is build via Grunt (http://gruntjs.com). The 

source code of the Refinery Platform including the exploration system, extensive 

installation instructions, help, and background information is hosted on GitHub: 

http://github.com/parklab/refinery-platform. The list graph has been implemented as 

a separate application to support future reusability but is fully integrated into the 

Refinery Platform via an AngularJS wrapper application. The list graph is 

implemented in the latest version of JavaScript (known as ECMAScript 6 or 2015) and 

is build by Gulp (http://gulpjs.com). The source code is available on GitHub as well: 

https://github.com/flekschas/d3-list-graph. Both applications are continuously 

integrated via Travis-CI (https://travis-ci.org) and the Refinery Platform features 

several unit tests to ensure validity. 

3.3.1 OWL to Neo4J parser 

In order to access the ontology term hierarchy quickly, ontologies are converted in a 

simplified graph structure and imported into Neo4J. For that a Java-based parser has 

been implemented, which extracts the terms and their direct subclass relationships. 

The parse utilizes the OWL API (Horridge and Bechhofer, 2011) and currently supports 

OWL documents in the Extensible Markup Language format. Ontologies to be 

imported are checked for validity using HermiT (Glimm et al., 2014) prior to 

processing. The parser is implemented in Java 7, is compiled into a Java Archive via 

Gradle (http://gradle.org) and continuously integrated via Travis-CI. The source is 

publicly available at https://github.com/flekschas/owl2neo4j. In addition, to simplify 

the collection and import of ontologies related to Stem Cell Commons a small utility 

repository holds batch download and import instructions at 

https://github.com/refinery-platform/ontology-imports. 

In order to ensure data integrity, a minimal graph schema has been 

developed to guarantee uniqueness of ontology terms. As listed in Table 3, nodes that 

represent ontology classes are labeled by Class and must have a unique URI. 

Additionally an index on the name property is added to accelerate lookups. In order to 

keep track of imported ontologies, a meta node for each ontology is created and 

labeled Ontology. Nodes being labeled with Ontology must have a unique URI and 

acronym. OBO’s IDSPACE is commonly used as an acronym; e.g. GO is the IDSPACE of 

the Gene Ontology and used as the acronym. OWL ontologies do not have the notion 

of an IDSPACE but support prefixes. 
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Label Constraint 

Class URI must be unique 

Class Index on property name 

Ontology URI must be unique 

Ontology Acronym must be unique 

Table 3: Graph database schema constraints. 

Additionally, each imported term is labeled by its ontology’s acronym. This is 

similar to OBO’s namespace and helps to manage large numbers of ontologies. It 

should be noted that no term is being duplicated but instead reused when importing 

multiple ontologies. This has two benefits: First, many low level terms that are used 

across various ontologies are merged into one node, significantly saving disk space. 

Second, every query automatically includes all possible relationships over all 

ontologies. The parser extract satisfiable classes, i.e. classes that do not equal 

OWL:Nothing, and iterates over each class’ direct superclasses. Direct subclass 

relationships do not include transitive relationships and are therefore preferable for 

visualization purposes, since the transitivity should be illustrated by the visualization 

explicitly. Additionally, the parser is able to extract existential quantification 

properties (EQP) of subclass relationships.  
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4 Results 
The landing page of the Refinery Platform is illustrated in Figure 4.1. The dashboard 

provides three main panels for data sets, analyses and workflows. All three panels 

work similarly. The major difference of the data set panel is the ability to search and 

explore data sets. Since this project focuses on ontology-guided exploration of 

biological data only, other parts of the Refinery Platform will not be covered here. 

 

Figure 4.1: Landing page of the Refinery Platform. (1) Data set panel. (1a) All currently imported 

data sets are listed by their title. Glyphs depict basic ownership and sharing information. (1b) 

Search is incorporated into the same interface and consists of a simple query input field. (1c) 

The exploration panel can be activated via a click on Explore. (2, 3) The analyses and workflow 

panels behave in the same way as the data set panel but do not feature search or exploration 

tools yet. 

4.1 Application 
The different components of the exploration tool are shown in Figure 4.2. The data 

set panel is explicitly kept identical to the landing page to provide a familiar context 

and keep visualization methods as an add-on exploration tool. Hearst (2009, Chapter 

1 & 3) states that search is an mentally intensive task by means of finding data and 

sensemaking of results. Hence, the user interface should try to keep the cognitive load 

minimal. The visualization panel (Figure 4.2, 2 & 3) expands from the data set panel 

and pushes out the other content. The list graph (Figure 4.2, 2) and the tree map 

(Figure 4.2, 3) share about two third of the screen. On the initial page load without 

any search, the list graph and tree map show the repository-wide abundance of 

annotation terms. Exemplarily, Figures 4.2–4.8 show the usage of cell type related 
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ontology term annotations from CL. The exploratory visualization interface follows 

the famous Visual Information-Seeking Mantra (Shneiderman, 1996) by providing 

overview first and details on demand. Both visualizations are initialized with the 

absolute root term, which in this case is native cell (CL:0000003). The currently active 

root node is highlighted via bold black text and a softly glowing blue underline 

(Figure 4.2, 3b). The list graph does indirectly highlight the root nodes as the nodes 

being in the top left corner of the visualization. The list graph supports multiple root 

nodes to be shown. Since not all data sets have been annotated with some ontology 

terms a pseudo term called No annotations is added. No annotations is linked with the 

actual root node native cell via a pseudo root node that is not shown as it simply 

represents that repository as a whole. In order to help the user find the link between 

the tree map’s rectangles and list graph’s nodes, the currently visible layer of inner 

nodes in the tree map is shown in the list graph as the column with a light grey 

background and slightly darker node borders. 

Both visualization idioms feature a top bar for controls and extra information 

(Figure 4.2, 2a & 3a). The list graph’s top bar consists of six global options: sorting by 

precision, recall, and name as well as an option for each of the two bar chart 

visualization modes and a button to show the whole graph at once. In addition, a click 

on the right most arrow in the top bar will uncover options for sorting each level of 

nodes by precision and recall individually (Figure 4.3). The current state of each top 

bar setting is depicted by an icon next to it. Active settings are highlighted by 

increased font weight, text underline and a darker font color. 

The tree map illustrates the number of data sets associated with a term by 

the size of a rectangle and sorts them in descending order; hence, the largest 

rectangle is listed top left. The rectangles’ area reflects the ratio between all visible 

terms’ sizes. The color of a rectangle indicates the distance of the farthest leaf node. 

Both channels provide an immediate motion for how many data sets are associated to 

a term and how much many more sub terms can be explored. The list graph directly 

visualizes related sub terms via a line between nodes and the precision bar depicts the 

number of data sets relative to the active root term. Subclass relationships are all 

drawn in the same direction from left (superclass) to right (subclass). Terms with 

multiple parents are duplicated when the parents’ distance to the root is not equal. 

Duplicated nodes are illustrated by a dashed rather than a solid node border. To avoid 

clutter, sub graphs of duplicated nodes are omitted, instead the first instance, which 

is closest to the root node, provides the sub graph only. 
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Figure 4.2: Exploration interface. (1) The left part of the interface remains unchanged 

compared to the landing page. The right part is divided into (2) the list graph and (3) the tree 

map panel. The list graph consist of the main visualization and a top bar (2a). The tree map is 

similarly composed of a top bar and the main visualization below. The top bar features 

breadcrumb-inspired path view to the absolute root term (3b) and an input field to increase the 

depth for zooming (3a). 

 

Figure 4.3: Column-wise sorting. (1) A click on the arrow uncovers column-wise sorting 

settings. Each column of nodes can be individually sorted by precision (2) or recall (3). 
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Hovering a button will highlight that column’s nodes’ attribute (2 & 2a). A click on either 

button will toggle through ascending and descending sorting modes. The current sort order is 

depicted by an icon next to the button that triggers sorting (2 & 3). Other columns will remain 

unaffected (2b). 

There are many interactions that connect the list of data sets, the list graph, 

and the tree map. Since novice users do not know how to interact with the exploration 

tool, a list of basic interaction guide is provided in the top right corner of the 

exploration panel (Figure 4.2, 4). Interactions can broadly be categorized in 

highlighting, browsing and querying. Highlighting works in two way: it reveals a data 

set’s annotation by showing related ontology terms in the list graph and tree map and 

all data sets related to a term are highlighted when interacting with a term in the tree 

map or list graph (T1). Mousing over the relevant parts of the exploration interface 

triggers both interactions. For example, to reveal the annotations of a data set, the 

user can mouse over a list entry and the related annotation terms in the list graph 

and tree map are simultaneously highlight by changing the grey scale color to an 

orange hue (Figure 4.4, 1). Hereby, the saturation of a highlighted rectangle in the 

tree map is kept constant to the luminance of grey, thus, lighter shades of orange 

indicate that a node is closer to a leaf than a more saturated orange. The tree map 

highlights direct or indirect annotation terms; e.g. the data set being hovering in 

Figure 4.4 is annotated with neuronal stem cell, which is not directly visualized at the 

current tree map level, hence the parental terms somatic cell and precursor cell are 

highlighted. The list graph visually distinguishes between direct and indirect 

annotations such that nodes related to direct annotation terms are fully colored in 

orange and indirect terms are only bordered in orange. 

 

Figure 4.4: Data set-wise annotation term highlighting. (1) Normal mousing highlights 

relevant nodes in the list graph (1a) and tree map (1b). (2) Pointing the mouse cursor on the 

small magnifier icon will zoom out the list graph to the extent that all direct annotations are 

visible (2a). 
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Hovering an ontology term in respect to the list graph and tree map is 

illustrated in Figure 4.5 (1). Nodes and rectangles are highlighted by a black border 

(Figure 4.5, 1, 1a & 1c). When pointing the mouse over a node in the list graph, the 

directly hovered node’s color is additionally inverted completely–i.e. the background 

turns from white to black–to make it pop out from indirectly hovered super and sub 

terms (Figure 4.5, 1c). List entries are shifted a little bit to the right, the font color 

turns black and an extra black border is added to the left, hence using two channels: 

color and motion to make related data sets pop out. Locking a term has been 

implemented to provide a possibility for comparing different annotations. While 

normal highlighting will be reverted as soon as the user leaves the hovered node or 

rectangle, a locked term will remain highlighted until the user unlocks it. A small lock 

icon depicts whether a term is locked (Figure 4.5, 2 & 2a). The tree map colors locked 

terms in orange while the list graph adds a thick orange border to the node. A term 

can be locked by a single mouse click on a rectangle or a click on the lock icon that 

appears right to a node when hovering it. Data sets that are associated to the locked 

term appear with a light orange background and a thick left orange border (Figure 

4.5, 2b). 

 

Figure 4.5: Term hovering and locking. (1) Hovering a node of the list graph (or rectangle of the 

tree map) highlights the term itself as well as related super and sub terms in the list graph and 

the tree map (1a). Data sets that have been annotated with the term being hovered are 

highlighted as well (1b). Additionally, super and sub terms of the directly hovered node in the 

list graph feature a superimposed partial bar to compare the value of the directly hovered node 

with the indirectly hovered nodes. Green bars (1c) indicate an increased and red bars (1c) 

indicate a decreased value compared to the hovered term. Locked nodes are highlighted in 

orange (2). 

There are two ways of browsing the term hierarchy: expanding a sub tree by 

re-rooting the list graph and tree map or increasing the number of levels seen 

simultaneously. In addition to visually browsing a branch, the data collection will be 

queried according the new root. Thus, only data sets that are associated with the new 
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root term will be retrieved. Figure 4.6 shows the transition from native cell (Figure 

4.6, 1) to stem cell (Figure 4.6, 2). Browsing along the term hierarchy can be triggered 

by a double click on a tree map’s rectangle or by a single click on the lock icon left to 

a node in the list graph. The lock icon appears individually for each node when the 

user hovers over the node of interest. 

 

Figure 4.6: Browsing by branch. (1) The data collection is currently queried for native cell (1a), 

indicated by the URL, a small lock next to the corresponding node in the list graph and the 

highlighted term in breadcrumb-like navigation panel. 81 data sets (1b) are associated to native 

cell. After drilling-down to stem cell (2 & 2a) the number of retrieved data sets decreased to 59 

(2b). Terms that are visualized simultaneously in both diagrams are indicated by (2c). During 

drill-down the list graph shows siblings of the current root node (2d) for quick comparison but 

hides siblings of higher-level terms in order to avoid visual clutter. 

In addition to browsing by branch, the user can increase the visible depth to 

show nodes farther away from the root node (Figure 4.7). Given a visible depth of !, 
all inner nodes at distance ! (from the root node) and all leaf nodes with a distance of 

<= ! are shown. Completely white areas such as in Figure 4.7 (2) indicate very small 

terms such that the branch-related extra padding prevents the rectangle form being 

shown. 

Sometimes it is desired to querying the data collection (T7) and filtering 

subsets (T8) according to ontology annotations without wanted to browse just one 

specific branch of the class hierarchy. The exploration tool provides set theoretic 

queries across the whole annotation set hierarchy via the list graph visualization. 

Pointing the mouse cursor over a node will display two icons to the left of the node. 

The lock icon triggers browsing by branch and the union icon stands for querying. A 

click on the latter or on the node will initiate a union query. Multiple clicks on the 

same node will toggle through four different query modes as described in table 4. The 

two modes union and intersection produce the same results when only one term is 

queried at a time. For example, making a union query for Mus musculus and an 

intersection query for stem cell will retrieve only data sets that are annotated with 
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both terms. When a third intersection query for neural cell is issued the retrieved data 

sets must be annotated with Mus musculus and either or both of the terms stem cell or 

neural cell. Figure 4.8 illustrates the query capabilities of the exploration tool. 

 

Figure 4.7: Tree map’s level zoom. (1) The visible depth is set to three. (2) The visible depth is 

increased to nine. 

Number of clicks 

modulo four 
Query mode 

0 Inactive: retrieved data sets might be annotated with this term. 

1 
Union: retrieved data sets must be annotated with either of the 

terms queried by union. 

2 Intersection: retrieved data sets must be annotated with this term. 

3 
Exclusion: retrieved data sets must not be annotated with this 

term. 

Table 4: Description of the four different query modes. 
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Figure 4.8: Annotation term querying and 2-bar visualization mode. (1) List graph has been re-

rooted to native cell, which simultaneously acts as a union query. Additionally, (2) all data sets 

related to phagocytes are excluded and only the intersection between (3) precursor cell and (4) 

leukocyte related data sets are retrieved. Recall of annotation term sets are visualized next to 

precision by enabling the 2-bar visualization mode (5). 

During the exploration process the user can choose to preview a data set 

before having to navigate to it. Figure 4.2 (1e) indicates the location of the button to 

open a data set’s preview panel. Once a user hovers over a result list the preview 

button becomes more apparent. The layout of the preview is shown in Figure 4.9. The 

different parts of the preview panel have been carefully designed and adjusted 

according the results of the interviews (Chapter 3.2.2). The technology and biological 

sample description are listed right after the short description. As they generally seem 

to be most important to relevance. The analyses panel provides a notion of how 

popular a certain data set is and even though it isn’t regarded as a key characteristic 

for exploratory search it is immensely important for navigational search and the 

broader purpose of the Refinery Platform as an integrated data management, 

analyses and visualization system. 
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Figure 4.9: Data set preview panel. The panel is divided into four main parts: summary, 

analyses, references and protocols. The summary panel is comprised of a short descriptive 

paragraph, information regarding the technologies and measurement types, biological sources, 

the number of data files, and ownership. The analyses panel holds all analyses that have been 

run on the data set from within the Refinery Platform. The references panel provides the title, 

author, journal, publication date, a source link, and a link to PubMed as well as an expandable 

abstract if available. Finally, the protocols panel lists sample treatments, data generation, and 

post processing actions taken prior to importing into the Refinery Platform. 

4.2 Case study 
In order to demonstrate the usefulness of the proposed ontology-guided exploration 

system, the Stem Cell Commons data has been used as a real-world case study. The 

scope of this study has been limited to the exploration along the EFO given that 198 

out of 199 Stem Cell Commons ISA-Tabs are directly or indirectly annotated with a 

high number of EFO terms. The EFO provides a suitable topology for exploration since 

it’s main focus is on structured descriptions of experimental factors of biological 

experiments. 

Data scientists have a strong need to find data sets that match experimental 

characteristics (N1) and explore data sets with similar experimental factors (N2). The 
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exploration tool addresses both needs by an integrated single-page application of 

text-based search, data set previewing and the two visualization techniques: the list 

graph and tree map. Often exploration is a multi-step process of identifying 

putatively interesting data sets by sequentially scanning information. For example, 

when searching for blood stem cell only four out of seven results contain information 

about blood in the result list item. Hovering the cursor over the results immediately 

provides feedback on the annotations. Also, a search zebrafish stem cell retrieves only 

one query. While it is often unknown if truly everything is found, a quick exclusion 

query on Danio rerio reveals that only one stem cell related zebrafish data set exist. 

Generally, desired or undesired experimental factors can quickly be requested or 

excluded after issuing a search and help to filter down results. Most importantly, the 

data set preview and visualization interface does not interfere with search panel, 

providing easy-to-use extension. Especially the data set preview is helpful to 

understand search results when the search result’s keyword in context preview and 

visualization do not reveal sufficient information. 

Exploring the repository via branch-related queries and investigation of the 

tree map at different levels of depth provides a quick overview of the annotation set 

hierarchy of collections of data sets (N3) and helps to find higher-level sets that are 

hidden by normal search.  

 

Figure 4.10: Exploring high-level annotation sets. (1) Text-based search does not retrieve any 

data sets related to leukocyte. Exploring Stem Cell Commons cell type related data sets (1a) 

reveals leukocyte annotation set (2). 

For example, given that a project leader, group leader or funder wants to get 

an overview of all leukocyte-related data sets, searching for leukocyte leads to no 

results (Figure 4.10, 1) but exploring different cell types quickly reveals a group of 12 

data sets that are associated with leukocytes via subclass relationships (Figure 4.10, 

2); e.g. granulocytes, lymphocytes, B cells, T cells, monocytes, etc. The same holds for 

many other higher-level terms that have not been used for direct annotation but 

describe larger collections of data sets due to the transitive nature of subclass 
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relationships. Hereby, the combination of the list graph and tree map empowers rich 

exploration that is hardly possible with text-based search only. 

Finally, data curators and ontology engineers would like to get insights in the 

overall annotation structure to identify areas that can be improved in terms of 

annotations or term specificity. Looking at the abundance of No annotation or the 

OWL:Thing can quickly identify the overall annotation coverage. In this case study, a 

group of two data sets have been found instantaneously that are annotated with the 

obsolete class obsolete_mammary gland, which should ideally be avoided. Browsing 

experimental factor shows that most annotations are related to material entities and 

provide the deepest exploration paths. Increasing the visual depth to three gives a 

clearer overview of the annotation set topology (N5). Most of the largest annotation 

sets are close to experimental factor, indicating little to explore (Figure 4.11, 2). For 

example, when exploring chemical compound annotations a clear imbalance is 

apparent. Two-thirds of all data sets are annotated with a chemical compound and 

almost all correspond to Biotin (Figure 4.11, 2b). Hence the mutual information–a 

measure for the reduction of uncertainty when knowing specific information–of 

biotin is relatively low compared to most other terms. While it is expected that many 

experiments include biotin due to it’s high binding affinity to streptavidin, which is 

commonly used for isolation, purification or separation and called biotinylation. 

Exploration-wise, those terms are less interesting, as they do not help to find specific 

data sets. For a data curator it could be explored what other chemicals are associated 

with data sets to provide a richer description. 

 

Figure 4.11: Annotation set overview. (1) The tree map provides holistic overview of all terms of 

distance two. (1a) The tree map and list graph visualization metrics–precision and area–

complement each other. (2) Depth of three reveals that most of the largest annotation sets are 

close to the experimental factor. (2a) Cell type seems to provide most exploration depth. (2b) 

Two-thirds of all data sets are annotated with biotin. 
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5 Discussion 

5.1 Conclusion 
The ontology-guided exploration tool present throughout this thesis enables users to 

explore large biological data repositories by means of text-based search, visual 

browsing, and term-related querying. This application enriches discoverability and 

findability of data collections that have been ontologically annotated by visualizing 

semantic relationships of the annotation terms. The main contributions of this 

project include the conversion of ontologies into a simplified global graph structure 

that allows easy and quick access to the class hierarchy across multiple ontologies 

and is far less resource intensive than triple stores. Furthermore, ontology-compliant 

pruning of the original topology in accordance to the available data sets provides an 

annotation set hierarchy, which is highly optimized for exploration. The visual 

exploration interface is a unified single-page application that combines powerful 

search, data set previewing with the tree map and list graph visualization to provide 

an integrated exploration experience. The visualization serves two purposes: 

sensemaking and pattern discovery as well as ontology-guided querying of the data 

collection and could be regarded as a user-friendly semantic query tool. Finally, two 

key limitations of ontology-guided exploration described by Gehlenborg (2010) have 

been successfully overcome: multiple ontologies can be visualized and queried and 

the user interface integrates both keyword-based querying and visual browsing, 

giving the user the ability to use both simultaneously. 

5.2 Limitations 
The current exploration system should be regarded as a proof of principle only. The 

reason is twofold: first, the decisions drawn from the needs and required tasks as well 

as the interview lack a large-scale evaluation. While the current application enriches 

existing system, it needs to be proven that users adapt these contributions in their 

search process. Also, the implementation provided needs further improvements that 

are outside of the scope of this thesis. For example, to allow the exploration of many 

large ontologies simultaneously a server-side component needs to preprocess the 

ontology structure to relieve the client-side visualization application and ensure 

responsiveness. Furthermore, the current integration of the search system and visual 

exploration tools is limited in two ways. First, there is only one incremental 

exploration step possible, i.e. when the user initiates a search query the only 

additional step possible is to filter down these search results. The user cannot initiate 

a second search after filtering without resetting previous actions. Second, there is 

currently no possibility to loosen constraints of search results via annotation term 

queries as described in (T9). Also, comparing different groups of annotations terms 

(T3) is currently only possible indirectly. 
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Apart from the application side, the currently greatest concern regarding an 

ontology-guided exploration approach is that its usefulness dramatically depends on 

the quality of data curation. Most data collections provide none or only very few 

ontology annotations. And even if ontology annotations are available, other metadata 

are currently not incorporated. Fortunately, using this exploration tool it is easily 

possible to evaluate the current state of annotation and find areas for improvements. 

Also, having successfully addressed previous limitations and allowing an arbitrary 

number of ontologies to be visualized introduces a novel concern: how to determine 

meaningful entry points for each ontology in an automated fashion? Quite often 

terms close to the absolute root term (OWL:Thing) are very technical and provide little 

to no use for browsing.  

Another limitation arises from pruning the original term hierarchy to a strict 

containment set hierarchy where each subclass must represent a strict subset in 

terms of the data sets associated to it. While this is desperately needed to provide a 

data structure for exploration that avoids meaningless browse steps, this heavily 

obscures the original structure and hides intermediate terms. For example, the data 

used in the case study described in Chapter 4.2 originally consists of 17239 ontology 

classes of which only 83 terms have been used to annotate the Stem Cell Commons 

data. Including all parental terms up to OWL:Thing, a total of only 156 terms link to 

data sets and thus are useful for browsing. Users might wonder what happened to 

unused or intermediate terms. 

5.3 Outlook 
The current exploration tool can be extended in multiple ways to further increase the 

interactions between classic search and exploration. An application that captures the 

individual steps of the whole exploration process could address the currently limited 

interplay between the search and the two visualization-based browsing methods. 

Often the users go back and forth, change query keywords or browse in different 

directions depending the previous results. Having a way to look at previous steps, link 

individual results, and provide an overview of the area already discovered without 

having to leave the current view could facilitate understanding of the consequences of 

a new search step and also point out undiscovered areas of the data repository. Given 

Shneiderman’s Information Seeking Mantra (Shneiderman, 1996), this feature would 

relate to history. One of the principal reasons of a data scientist or analyst for 

searching for data is to compile a collection of data sets to address biological 

questions and to compare quality of findings. Thus, in most cases more than a single 

data set is needed. Providing a way to store highly relevant data sets within the 

exploration interface could support compilation and enhance comparability across 

data sets that have been found along an extended exploration process. The idea is 

related to what Shneiderman called the extraction task (Shneiderman, 1996) and 

originates from the omnipresent shopping card that every online shop provides. For 
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example, similar to how users explore books, clothing and other things, clinical data 

scientists could collect patient data for studies or clinical trials. Another useful 

extension could be a simultaneous search across data sets and ontology terms. This 

would facilitate finding annotation terms of interest more efficiently. 
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