
Ontology-guided exploration of
biomedical data repositories

Fritz Lekschas

Freie Universität Berlin

Department of Computer Science and Mathematics

Freie Universität Berlin

Kaiserswerther Str. 16-18

14195 Berlin, Deutschland

Master of Science Bioinformatics, Master Thesis.

 ii

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als

meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,

Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate aus

fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in

gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und

auch nicht veröffentlicht.

Datum Unterschrift

 iii

The research for this master thesis has been conducted in collaboration with Peter J.

Park's and Nils Gehlenborg's laboratories at the Department for Biomedical

Informatics at Harvard Medical School in Boston. Prof. Dr. Nils Gehlenborg from

Harvard Medical School and Prof. Dr. Peter N. Robinson from the Free University of

Berlin have supervised this project.

Submitted: February 2, 2016

 iv

Abstract

Over the last decade, technologies for measuring biological characteristics in high-

throughput fashion have advanced dramatically, numerous novel methodologies have

been invented and data accumulates at an ever-increasing rate. The community needs

to handle petabytes of so-called ‘OMICS’ data alone and recent efforts are

encouraging a shift from local to global cloud-based storage solution to facilitate

sharing. A principal challenge engendered by this development is how data can be

easily found and explored by researchers. Classic information retrieval system focus

on finding specific data given some input query like keywords and mostly rely on

string matching against a textual content. While this works well for actual text-based

content it is less effective for biological data which primary content is often numeric;

thus, applications rely on search across associated metadata. Related to the explosion

of biological data generation, the community realized a need for standard description

of the data masses in order to provide interoperability and reuse of data. This led to

the development of several large biomedical ontologies. Efforts have been put into

automated mining and annotation of biological data using ontologies, providing rich

descriptions of the experimental setup and findings. Up-to-date ontologies are

mostly used for analysis of data sets and extraction of specific knowledge via

semantic queries. This thesis assesses the possibilities of using ontological

annotations to visually describe the nature of data collections, such as whole

repositories or subsets like search results, and to provide means of exploration along

the semantic relationships of annotation terms.

I describe an integrative approach of ontology-guided visualization of

metadata annotations across a data repository in combination with a modern text-

based search and data set previewing. A prototypical implementation demonstrates

the feasibility and enhancements compared to existing system. Additionally, a case

study evaluates the general effectiveness of the proposed method given a real-world

data collection.

 v

Acknowledgements

First and foremost, I would like to express my deep gratefulness to Nils Gehlenborg

for his tremendous support and excellent supervision over the course of my master’s

thesis. Nils’ broad knowledge in bioinformatics and data visualization, his excellent

management skills and thoughtful advices have been a great source of inspiration

throughout my stay. Second, I would like to thank Peter J. Park for making my visit at

his group possible and for supporting me throughout my stay. It has been an

unbelievably insightful visit. I would also to express my gratitude to Peter N.

Robinson for co-supervising my thesis, prior guidance and in general many fantastic

lectures throughout my undergraduate and graduate program.

Furthermore, I am grateful to the members of Peter J. Park’s and Nils

Gehlenborg’s group as well as the whole Refinery Platform team for their support

along this project. I am especially indebted to Burak Han Alver, Jean Fan, Youngsook

Jung, Scott Kallgren, Minseok Kwon, Eunjung Lee, Semin Lee, Soohyun Lee and Jia

Wang who volunteered for interviews and helped be gain insights in many small

peculiarities in search behavior regarding different fields of research in

computational biology. I would also like to thank Harald Stachelscheid for taking part

in the interviews and giving me many thoughtful advices relating important

characteristics in stem cell biology.

Additionally, I am deeply grateful to my parents who always encouraged and

supported me with all the hurdles that are engendered when living and working

abroad.

This thesis would not have been possible without the substantial help from

all you great people. I deeply appreciate your help.

 vi

To my mom and dad.

 vii

Contents

Abstract iv!

Acknowledgements v!

Contents vii!

List of Figures ix!

List of Tables x!

List of Acronyms xi!

1! Introduction 1!
1.1! The problem .. 1!
1.2! Importance of the problem ... 2!
1.3! Research questions and scope of the thesis .. 3!
1.4! Proposed Solution ... 3!
1.5! About this document .. 3!

2! Background 5!
2.1! Search principles ... 5!

2.1.1! Information retrieval ... 5!
2.1.2! Information seeking ... 9!

2.2! Visualization principles ... 11!
2.2.1! Graph visualization .. 16!
2.2.2! Set-typed visualization ... 17!

2.3! Ontologies ... 19!
2.3.1! OBO and OWL .. 19!

2.4! Graph databases ... 22!
2.5! Related work .. 23!

3! Methods 25!
3.1! Data ... 25!

3.1.1! Data abstraction ... 26!
3.1.2! Data Processing .. 27!

3.2! Design ... 28!

 viii

3.2.1! Requirements & Tasks ... 28!
3.2.2! Interviews .. 32!
3.2.3! Tree map .. 37!
3.2.4! List graph ... 40!
3.2.5! Preview ... 44!
3.2.6! Interactions ... 45!

3.3! Implementation .. 46!
3.3.1! OWL to Neo4J parser .. 47!

4! Results 49!
4.1! Application .. 49!
4.2! Case study ... 57!

5! Discussion 60!
5.1! Conclusion .. 60!
5.2! Limitations ... 60!
5.3! Outlook ... 61!

Bibliography 62!

 ix

List of Figures

 2.1 Holistic process of information retrieval .. 6

 2.2 Example analysis of an English sentence ... 8

 2.3 Precision, recall and MAP ... 9

 2.4 Summary of the classic information seeking process ... 11

 2.5 Anscombe’s Quartet. ... 12

 2.6 Overview of basic visual marks and channels ... 12

 2.7 Effectiveness of different visual channels .. 13

 2.8 The nine Gestalt principle of perceptual grouping ... 15

 2.9 Salience of marks ... 16

 2.10 Network visualization methods .. 16

 2.11 Screenshot of current 2D visualization techniques for tree data 17

 2.12 Basic principles of set-typed visualization .. 19

 2.13 Example and differences of RDF and RDFS ... 21

 2.14 Example property graph ... 23

 3.1 Abstract data model ... 26

 3.2 Graph manipulations ... 28

 3.3 Expected user exploration behavior ... 30

 3.4 Graph to tree and tree to tree map conversions ... 37

 3.5 Tree map zoom ... 38

 3.6 Tree map coloring, labeling and spacing ... 40

 3.7 Layout comparison of node-link diagrams ... 41

 3.8 Term property visualization via superimposed bar charts ... 42

 3.9 Tree map versus list graph ... 43

 3.10 Different search result outcomes .. 44

 3.11 Data set preview integration .. 45

 3.12 Early mock-up of the final exploration interface ... 46

 4.1 Landing page of the Refinery Platform .. 49

 4.2 Exploration interface .. 51

 4.3 Column-wise sorting .. 51

 4.4 Data set-wise annotation term highlighting .. 52

 4.5 Term hovering and locking .. 53

 4.6 Browsing by branch ... 54

 4.7 Tree map’s level zoom ... 55

 4.8 Annotation term querying and 2-bar visualization mode .. 56

 4.9 Data set preview panel ... 57

 4.10 Exploring high-level annotation sets ... 58

 4.11 Annotation set overview ... 59

 x

List of Tables

 1 Ontology usage across Stem Cell Commons .. 25

 2 Evaluation of data set characteristics ... 36

 3 Graph database schema constraints. ... 48

 4 Description of the four different query modes ... 55

 xi

List of Acronyms

BTO BRENDA Tissue and Enzyme Source Ontology

CHEBI Chemical Entities of Biological Interest

DBMS Database Management Systems

EFO Experimental Factor Ontology

EQP Existential Quantification Property

FMA Foundational Model of Anatomy

GO Gene Ontology

IR Information Retrieval

ISA Investigation Study Assay

JS JavaScript

MA Mouse Adult Gross Anatomy

NCBITAXON National Center for Biotechnology Information Taxonomy

NCIT National Cancer Institute Thesaurus

OBO Open Biomedical Ontologies

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

RO OBO Relations Ontology

URI Uniform Resource Identifier

W3C World Wide Web Consortium

 1

1 Introduction
The topic of this thesis is the exploration of biomedical data repositories through

integrated search and visual exploration along text-based and ontology-guided

metadata.

1.1 The problem
During the last decade technologies for measuring biological characteristics such as

the genome, transcriptome or metabolome have evolved dramatically and the number

of data sets generated is steadily growing. Today, the community is facing petabytes

of so-called “-omics” data (Eisenstein 2015) alone. Managing and finding the right

data becomes more and more involved. Large repositories like Gene Expression

Omnibus (Edgar et al. 2002) or ArrayExpress (Kolesnikov et al. 2015) host a variety of

different functional genomics data sets, including gene expression, genome variation,

methylation, non-coding RNA, and many other profiles. The first step in managing

the large amount of data was taken in 2001 when the Minimum Information About a

Microarray Experiment guidelines have been introduced (Brazma et al. 2001), which

later became the standard for microarray data annotations. Along with guidelines for

the description of functional genomics data, controlled vocabularies have been

developed that further increase the expressiveness and avoid ambiguities.

Taxonomies and ontologies are the most commonly used controlled vocabularies for

annotation of biomedical data. While taxonomies provide some structure and

unambiguous naming, ontologies offer rich ways to semantically describe the

relationships of concepts and enable the inference of new knowledge. The Gene

Ontology (GO) (Ashburner et al., 2000) was the first major biomedical ontology that

quickly obtained high popularity and widespread in the biomedical community.

Among others, the Experimental Factor Ontology (EFO) (Malone et al., 2010) is

extensively used to capture various experimental conditions underlying the data

generation and is hosted at the European Bioinformatics Institute in the United

Kingdom. The main advantage of utilizing ontologies for annotation of biomedical

data is twofold: Frist, controlled globally unique vocabulary avoids naming

ambiguities and fosters reuse of existing knowledge. Second, the underlying

mathematical logics enable automated inference of new information. Having a

controlled description of the data is the first crucial step to ensure the usefulness of

data in the future.

Today most data repositories solely rely on textual representation of their

content. Users have the possibility to query the application against keywords and

retrieve results holding a minimal amount of information, e.g. title, author, date etc.,

to provide a first insight. Internally, systems match keywords against their document

corpus and return a ranked list of decreasing relevance. The document’s relevance is

 2

determined via complex formulas that evaluate weighted frequencies of keyword

matches within a document against the total collection. Though, some systems

experiment with data-driven search algorithms (Fujibuchi et al., 2007), the majority

relies on text-based queries. Whether users find relevant data is subject to two

characteristics: findability (Morville, 2005) and discoverability. The first term

describes how easy it is to locate elements of information in a known space while the

latter describes the efficiency to discover (new) information in an unknown space.

Both criteria need to be met in order for a repository to be fully explorable.

A major challenge in finding the right data is that users are not directly

operating on the biological data itself but instead on metadata of descriptive texts

(e.g. summaries, protocols, etc.). There are many ways to express the same ideas and

while controlled vocabularies are often used to simultaneously search for synonyms

of query keywords, the relation between different search results remains hidden. It is

not obvious why certain documents are ranked higher than others. Also, if the exact

keyword to be searched is unknown it is challenging to find relevant data. While word

ambiguities referring to the same concept can be solved well by inclusion of synonym

collections such as the Medical Subject Headings (Rogers, 1963). Making data sets

related to higher-level or lower-level terms explorable in purely text-based search

applications is more challenging because it is not known in which situation the user

wants to include related data. Also, even closely related concepts might have distinct

names, making autosuggestions less intuitive. For example, should a search for

epithelial cell retrieve or suggest data related to podocyte–also known as renal

glomerular visceral epithelial cell–a subclass of epithelial cell? Another major problem is

that there is no simple way to understand the nature of the repository or subsets of it,

such as search results. Most repositories only specify the total number of hits or very

generic statistics like the total number of data sets. Data repositories that have been

thoroughly annotated with ontological terms have the potential to provide

meaningful context, can aid better understanding of relationships to find hidden

data, reveal trends, and ultimately facilitate semantic exploration. While there are

many tools available for exploring data, most of them work in isolation or focus on a

single task only. Up to date, there is no tool available that addresses the different

aspects of search and exploration in an integrated manner.

1.2 Importance of the problem
The sheer amount of biomedical data and the high complexity of experimental setups

increase difficulties in finding relevant data. Finding the right data is key to answer

biological questions and deriving new hypothesis in computational biology and

beyond. Having better ways of exploration can highlight patterns and improve overall

reusability of data.

 3

1.3 Research questions and scope of the thesis
The main research question of this thesis is how the exploration of ontologically

annotated biomedical data collections can be improved in two ways: better

understanding of search results and the composition of the repository as a whole.

Hereby, exploration is meant to be the act of browsing and searching to find known

and unknown data and to discover novel information. The goal of this thesis is to

provide a method to visualize the semantic composition of annotations and allow for

ontology-guided querying and filtering alongside with text-based search.

The scope of this thesis is to conduct a requirement analysis, review previous

work on user interfaces that deal with repository exploration, and to develop new

ways of browsing and exploring heterogeneous biomedical data repositories. The

requirement analysis is intended to describe the needs and required tasks of the

exploration approach and to categorize these according to different user groups.

Related work in the field of repository exploration should provide an overview of the

current state of research and point out known limitations that need to be addressed. A

novel visual exploration approach should be developed, implemented and integrated

into the Refinery Platform as a proof of principle. Finally, the prototype is to be

evaluated using real-world data.

1.4 Proposed Solution
When searching for text documents search engines return the keywords found in

their natural context, enabling the user to reason about the document’s semantics

derive relevance. Without a context it is difficult to judge whether a retrieved

document really matches the user’s needs and whether it fits to the user’s mental

model. An increasing number of biomedical data collections have been annotated with

ontological term but in regards to text-based search those terms might not match or

might not be familiar to the user. Similar to how the most relevant query keywords

are presented within their context, the annotation terms themselves can be put into

context by showing the semantic connection using their ontological relationships. In

order to facilitate the understanding of search results, a novel list-like compact graph

visualization has been combined with a tree map visualization to provide both:

sensemaking of the current search results, providing an overview of the repository,

and to enable ontology-guided querying to facilitate semantic exploration.

1.5 About this document
This thesis is roughly structured into three parts. Chapter 2 introduces the core

concepts of search, visualization, and ontologies and describes related work. Chapter

3 introduced the data source used across this project, describes the design process

and lists the user needs and required tasks for the exploration process. Chapter 4

presents the results in form of an implementation of two visualization methods and

their integration into the host application–Refinery Platform–for searching,

 4

browsing, and exploration. Furthermore, a real-world case study for evaluation of the

novel exploration method is presented. Finally, chapter 5 discusses the results and

conclusions, examines current limitations, and gives an outlook for future

enhancements.

 5

2 Background
Ontology-guided exploration of biological data repository is a cross-cutting challenge

of how to find and visualize relevant data. The next chapters summarize the current

state of research regarding search processes, visualization principles, bio-ontologies

and related work.

2.1 Search principles
Information and data-driven search has become an omnipresent process in many

digital activities. To highlight the great importance of information, George A. Miller

coined the term “informavore” (Machlup, 1983) to characterize organisms that

consume information in analogy to organisms that consume food to derive energy.

The principles of digital search (subsequently just called search) include the

extensively studied field of information retrieval, information seeking behavior, human-

computer interactions as well as information architecture. Information retrieval is dealing

with the technical and algorithmic aspects of search, i.e. finding ways to retrieve only

relevant data and to optimally rank the documents in such a way that the highest

relevant data are ranked first. The process of information seeking or more specific

information search describes the act of how humans seek for data and interact with a

given search system. Human-computer interactions study the generally behavior of

how people interact with computer systems. In the context of search this means

studying how people work with the search interfaces. The final component is

information architecture, which concerns about ways how information is best

structured in order to be found most easily by humans. All four components are

highly intertwined and crucial to ensure high usability in terms of findability and

discoverability.

2.1.1 Information retrieval

The technical process of retrieving relevant information from a collection of

information resources, given a well-defined information need is called information

retrieval (IR). The process is usually assumed to start with the user identifying a lack

of information. The notion of information need describes the information that is

needed to solve a specific problem and is typically being seen from two points of

view: the IR system and the user who expressed the need. The first can be described

as the object information need and characterizes the set of documents that are needed

by the IR system to fully answer the given query. The latter is sometimes referred to

as subjective information need of the user who suffers from the lack of information. It

is generally nontrivial to capture subjective information needs unless users are asked

directly; thus, in the context of IR, objective information need is often regarded only.

Information seeking (covered in Chapter 2.1.2) studies the user’s point of view in

finding information (Marchionini, 1995, see Chapter 1). Information need can be fact-

oriented, problem-oriented or a combination of both. For example, “What are the

 6

four nitrogenous bases found in RNA?” is a fact-oriented information need and can

easily be answered by “adenine, cytosine, guanine and uracil”. On the other hand,

questions such as “How do ribosnitches alter gene expression and what is their role

in cancer?” normally require the IR system to retrieve more than one document to

solve the problem. The technical aspect of IR starts when a query is submitted to an

IR system (Figure 2.1). In most cases search queries consist of a set of keywords such

as “riboswitches vs ribosnitches” but can generally be of any kind. Other frequently

used query data types are images, audio messages of natural language, or even a

document of the IR system itself. Usually, before the IR system issues a search, the

query is normalized and transformed into a compatible query format (Figure 2.1, 2).

Hereby, the query format strongly depends on the IR system. Next, the IR system

retrieves all documents that match the given search query. The search can

incorporate the document’s content, metadata or both (Figure 2.1, 3). Subsequently,

the retrieved documents are being sorted by decreasing relevance given an internal

model (Figure 2.1, 4).

Figure 2.1: Holistic process of information retrieval. (1) The formulated query is depicted as

rectangles of different length to symbolize different features. (2) The query is analyzed and

transformed into a compatible format. (3) Documents with features similar to the query are

extracted from the corpus. Features can match metadata or content traits. (4) The extracted

documents are ranked according to their relevance.

The term relevance is used to describe how well a certain document matches

the given search query in terms of its usefulness to answer the problem. Similar to

 7

objective and subjective information need, relevance can be objective and subjective too.

In the follow paragraphs relevance is used as a synonym for objective relevance.

The two most crucial components of any IR system are the ability to

efficiently find the documents that match to the given input query and to rank these

documents in such a way that it reflects the relevance best. Depending on the input

query, the retrieval algorithms can vary dramatically. Since this thesis makes use of a

text-based IR system only, other strategies will not be described here. Before

anything can be retrieved from an IR system, the data needs to be imported from the

original data store. The process consists of three main steps: translating the original

data into a model that is suitable for searching, analyzing the content and metadata

of each document, and finally indexing the documents. The first step is handled by an

external application and depends on the structure of the documents to be indexed and

which features are planned to be used for later retrieval. Once the data has been

extracted, transformed, and handed over to the IR system, the data goes through a

process called analysis, which translates text into tokens. A token could be considered

the smallest data nugget in an IR system and represents a normalized word or parts

of a word. The process of analyzing document content is also called tokenization and

can be regarded as feature extraction since tokens ultimately represent the

document’s features. Tokenization can incorporate a variety of different steps such as

ASCII conversion, lowercasing, split on punctuation and space, stop word removal,

removal of possessive form, stemming or lemmatization. Figure 2.2 provides an

example analysis. When a search is issued, the query must be analyzed in exactly the

same way as the documents had been analyzed to ensure that tokens match. After

tokenization, the final step is to index the data using a data structure called inverted

index. At its core, the inverted index contains two objects: an alphabetically sorted list

of all tokens and a dictionary containing the document IDs in which a token appears.

The first is called token list and links tokens to their dictionary entry. Retrieving all

documents that contain any of a given set of query tokens is then just a matter of

finding the terms in the term list, moving to the containment dictionary to extract all

documents with listed IDs. A thorough introduction to information retrieval is given

by Manning et al. (2008) and a practical guide from Turnbull and Berryman (2016)

provides insides into relevance engineering.

 8

Figure 2.2: Example analysis of an English sentence. In each step the characters to be changed

or removed in the next analysis step are marked in red. (1) The string’s non-ASCII characters

are translated into their ASCII counterparts or removed if no counterpart is available. (2)

Uppercase characters are lowercased. (3) The token is split into smaller tokens at every white

space and punctuation. (4) Common words that do add little value in retrieving relevant

documents are called stop words. These stop words are typically removed. (5) Words are often

transformed into their stem or lemma, in order to efficiently match the great variety of

different grammatical forms. E.g. “establishing”, “established” and “establishment” will all be

lemmatized into “establish”.

In order to evaluate the performance of an IR system a number of metrics

have been defined. The most common metrics are precision, recall, F-score and mean

average precision (MAP). Precision is the number of relevant documents divided by the

total number of retrieved documents (Figure 2.3). On the other hand, recall describes

the number of retrieved relevant documents divided by the total number of retrieved

documents (Figure 2.3). Given a binary classificatory, precision and recall are

equivalent to positive predictive value (i.e. true positives divided by true positives and false

positives) and true positive rate or sensitivity (i.e. true positives divided by true positives

and false negatives). Precision and recall are often negatively correlated, e.g. increasing

the number of retrieved documents increases recall but most likely decreases precision

since irrelevant documents will be returned too. The F-Score has been introduced to

provide a measure for the tradeoff between precision and recall and is the (evenly)

weighted harmonic mean of precision and recall). Because precision and recall do not

take the ranking into account, i.e. it does not matter if relevant or irrelevant data is

returned first MAP has been introduced to overcome this limitation. MAP reflects the

mean of the totalized averaged precision up to a certain search result ! (Figure 2.3).

 9

Figure 2.3: Precision, recall and MAP.

2.1.2 Information seeking

The process of how humans seek and search for information has been extensively

studied over the past three decades. Many different theoretical models have been

developed that attempt to explain the behavior. In contrast to information retrieval,

which technically ends when results have been retrieved, information seeking implies a

more open-ended process. The term itself was first coined by Wilson (1981) in order

to better study the act of seeking for information. The standard model describes the

process an potentially repetitive cycle of identifying the need for information,

building a mental model and translating that mental model into words, followed by

the specification of keywords for querying, evaluation of the retrieved results, and if

necessary reformulation of the query until the desired information is found. This

model assumes a clear task and need but the way to a satisfactory conclusion is not

known, thus the query might be adjusted iteratively. The standard model is depicted

in Figure 2.4 by the red arc indicating query term refinements. A more dynamic model

called berry-picking describes search as an open-ended process, in which the need for

information changes with every iteration. A clear final goal does not exist at the

beginning and it changes over time as the user gains knowledge from previous

results, hence the information need is not static but constantly changes in parallel to

the search process. Figure 2.4 indicates the relationship between the knowledge

gained through search and the change in information need by means of the yellow

arc. Kuhlithau (1991) proposed information search process; an information seeking model

consisting of six steps: initiation, selection, exploration, formulation, collection and

presentation. Here, initiation marks the recognition of the information need. First the

lack of information is put into context with what is already known and some general

broad ideas for a possible direction of search are initiated. The second step (selection)

describes the selection of a general topic, which will be explored in the third step in

 10

order to gain a better understanding of the new information space. Formulation marks

the fourth step and is mainly about specifying search and building a more focused

search direction. The fifth step (collection) involves the collection of the needed

information and is described as the most productive step. Finally, information is

validated and summarized and characterizes the end of the search process.

Throughout the six steps confidence is supposed to be build up along with

satisfaction or disappointment depending on the success of search. Information

seeking through steps is illustrated by the blue arc in Figure 2.4. Some information

seeking processes can be summarized as strategic approaches (Hearst, 2009, see

Chapter 3) to find information. Information foraging is a famous theory developed by

Pirolli and Card (1995) as an attempt to model how the strategies and technologies

for information seeking, searching, and consuming adapt along those processes. The

rational is based on ideas of how animals succeed in foraging food. It is assumed that

human users strive to consume the information with an optimal cost–benefit ratio.

Applied to the processes of searching this theory argues that human users constantly

evaluate their tactics on how to find the highest amount of information with the least

input of mental energy. Information foraging picks up the idea of informavores, which

characterize species that consume information. The most important aspect of the

information foraging theory is the concept of information scent (Pirolli et al., 2000).

Similar to how animals rely on scent to evaluate the odds of finding food or prey in a

given region, digital documents and user interfaces are scanned by human users for

hints and guides on where to find more information. Research on information scent is

subsequently strongly connected to human-computer interaction and information

architecture. Related to information scent is the theory of the patch-leaving model,

which studies conditions that make users leave the current page in belief to find

information elsewhere more easily. Information seeking as a strategy also describes

scenarios where the user gives up when finding information becomes too costly. The

green arc in Figure 2.4 represents strategic processes. Information seeking can be seen

as part for a broader process often referred to as sensemaking (Russell et al., 1993),

which describes the holistic behavior of how users transform information into

meaningful knowledge.

 11

Figure 2.4: Summary of information seeking processes: classic (red arc), berry-picking (yellow

arc), information seeking as stages (blue arc) and strategic information seeking (green arc).

A final note on information seeking strategies is the distinction between

searching and browsing in which searching is denoted as the act of articulating

desired information needs and browsing describes the strategy of recognizing a

relevant option among presented navigational choices. When the browse navigation is

well suited to a user’s need the process of browsing is often cognitive less challenging

than formulating one’s needs for issuing a search query (Hearst, 2009, see Chapter

3).

2.2 Visualization principles
Visualization describes the process of graphically describing information to

communicate a story. There are two major fields of visualization: scientific data

visualization and information visualization. Both fields study ways to visually

represent biomedical data. Scientific visualization deals with data that has an intrinsic

real-world appearance or is at least strongly related to a real-world object. Examples

are 3D animations of the blood flow within the human’s heart or visualizations of

molecules. On the other hand, information visualization is working with abstract

data, such as DNA sequence alignments or gene regulatory networks. Since this

project is dealing with abstract data only, the following paragraphs will solely focus

on information visualization. Statistician Francis Anscombe has greatly illustrated

why information visualization matters. He created the famous Anscombe’s Quartet

(Anscombe, 2012) (Figure 2.5), which illustrates the expressive power of visualization.

 12

Figure 2.5: Anscombe’s Quartet. An artificial data set comprised of four different sets of data

points. Each set has almost identical characteristic: mean x value of 9, x variance of 11, mean y

value of ~7.5, y variance of ~4.12, an x-y correlation of ~0.82 and a linear regression of

!! = !3 + 0,5!. Still, all four data sets are dramatically different.

At its core, each visual idiom (i.e. a chart or diagram) is composed of small

marks, the primitive elements, such as points, lines, or complex shapes. Each of these

marks has a number of different channels, which can be used for discrimination.

Channels include the vertical and horizontal position (artificial as well as spatial),

shape, color (hue, luminance and saturation), orientation (also called angle or tilt),

size (length, area or volume) and motion. Figure 2.6 provides an overview of the most

common marks and channels. Not every mark can be manipulated in all dimensions.

For example, rotation of a circle does not create a new distinguishable mark.

Figure 2.6: Overview of basic visual marks and channels. Adapted from Munzner (2015, see

Chapter 5).

 13

The channels can be divided into two groups (Munzner, 2015, see Chapter 5):

magnitude channels and identity channels. Magnitude channels represent a data

item’s property value that follows some order. For example, this could be the number

of reads that map to a specific region of the genome. Channels that are suitable for

magnitude illustration are position (aligned or unaligned), size (length, size or area),

orientation (tilt or angle), color (hue, luminance or saturation) or motion. Identity

channels are used to group marks and thus require categorical data. Suitable channels

are spatial region, color hue, motion and shape. The two channels color hue and

motion can be used to some extend with both ordered and categorical data separately

but not at the same time since. While motion is less common, color hue is often being

applied to heat map visualization techniques. Munzner (2015, see Chapter 5)

summarized the current state of understanding about the effectiveness of different

channels (Figure 2.7).

Figure 2.7: Effectiveness of different visual channels. Effectiveness has been measured

according to the error rate by means of discrimination and perceptual speed. Color hue has

been added as a magnitude channel since its extensive use in heat map visualization methods.

While the effectiveness of hue as magnitude channel is not known, relative to this ranking it

can be assumed to be low. Adapted from Munzner (2015, see Chapter 5).

Perceptual grouping is a process of mentally associating multiple marks or

elements to groups or patterns. Research on perceptual grouping studies how

human’s visual system determines which elements of an image belong to a higher

order concept. This is key to understand human’s remarkable pattern recognition. In

 14

real life almost no object is perceived as a continuous element duo to occlusion,

different lightning and other criteria. In order to organize the visual clutter and

successfully map regions of an image to known concepts, our visual system needs to

link different fractions of an image together. In the early 20th century Gestalt

psychologists investigated rationales behind perceptual grouping of elements within

an image. Max Wertheimer described the first set of laws that drive grouping in 1923

(Wertheimer, 1923) and 1938 (Wertheimer, 1938). Those laws that are now more

generally accepted as principles include proximity, similarity, prägnanz (i.e.

“pithiness”), common fate, closure, continuity, symmetry, and figure–ground.

Additionally, Stephen Palmer described two more principles in 1990’s: common region

(Palmer, 1992) and connectedness (Palmer and Rock, 1994). These modern principles

are now commonly associated with the Gestalt principles as well. The following

paragraph will describe the rationale behind each of the principles in brevity. A

detailed evaluation has been given by Brooks (2014).

The proximity principle states (Figure 2.8, 1) that the distance between

elements drives mental grouping. Elements that appear closer to each other are

perceived as a group of a higher-order concept. The principle of similarity states

(Figure 2.8, 2) that the higher the visual similarity of elements is the more likely they

are regarded to be associated with each other and thus are seen as a group. Hereby,

the degree of similarity heavily depends on the number of channels being different

among the elements. The principle of prägnanz says that geometrically simple

elements are favored over complex visual marks. As illustrated in Figure 2.8 (3), most

people are likely to see two overlapping rotated rectangles rather than two complex

non-overlapping polygons. The principle of common fate advocates that objects

moving in the same direction will also form a mental group despites other principles

such as proximity (Figure 2.8, 4). Another principle called closure states that closed

objects, which are mentally connected to known concepts are favored over unknown

open marks. As shown in Figure 2.8 (5) unconnected round lines that are centered

around a common point are most unlikely seen as separated objects but united into

an outlined circle. The principle of continuity is similar to prägnanz in that it states

that visual marks are perceived as groups when following the form of the simplest

line, indicting a possible trend or connection of the elements. The example from

Figure 2.8 (6) shows points that form a cross. The principle argues that human’s are

most likely seeing two trends that can be described as two intersecting straight lines

instead of two trends that follow a convex and concave line. The principle of symmetry

states that multiple symmetric marks positioned around a common center are

interpreted as a single object (Figure 2.8, 7). The figure–ground principle describes the

interplay of foreground and background. Whether a certain region is regarded to

foreground or background depends on the composition of many different visual

channels. Figure 2.8 (8) illustrates the famous face–cup paradox, in which two

separate well-known concepts are ambiguously identified, since the foreground–

 15

background relation remains unclear. The principle of common region states that

marks being enclosed by a line or are positioned in a homogeneously drawn region

(e.g. same color or texture) tend to be perceived as a group of common elements

(Figure 2.8, 9). Finally, the principle of connectedness expresses that elements which

are connected by other similar elements–mostly lines–form a complex object or act

as a group (Figure 2.8, 10).

Figure 2.8: The ten Gestalt principle of perceptual grouping. The upper lines show the original

visualization pictogram. The colored versions below illustrate the mental grouping by applying

different hues (red and blue) to visualization primitives. The grey arrows used in common fate

depict the direction of motion.

As an abstraction of data, visualization’s ultimate goal is to highlight

patterns for human users in a more efficient way than manual inspection of the raw

data could. In this respect, good visualizations need to draw quick attention to the

important details and help users locating specific elements. Salience is a property of

how much an element pops out among a set of other visual marks. The greater

salience is the easier it is for users to spot this mark. Salience itself can be expressed

through any of the visual properties described above, i.e. mark type, channels or

grouping. The effectiveness of salience depends on the overall composition of the

visual properties used across the whole visualization. The more exclusive a property

is the higher is its salience. Figure 2.9 illustrates some properties and how they

convey salience.

 16

Figure 2.9: Salience of marks. (1) High salience of the element in the third column and third

row makes that element pop out from the rest of the visual marks. (2) The same element from

(1) has been randomly relocated. Other elements use the same visual property but different

characteristics, which makes it harder for the relocated element from (1) to pop out.

2.2.1 Graph visualization

Graph or network-based data is omnipresent and as such does the field of graph

visualization span multiple different disciplines. Visualizing graphs and networks

involves the visual representation of vertices or nodes, their relation or linkage, and

optionally properties of them. Typical tasks involve the understanding of the network

or graph topology, clustering of nodes and finding paths. Two idioms are most

commonly used: node-link diagrams and adjacency matrices (Figure 2.10).

Figure 2.10: Network visualization methods. (1) Node-link diagrams are used most commonly

and can be categorized according to their layout algorithm. Popular layouts are: (1a) force-

directed, (1b) circular, or (1c) linear. (2) The adjacency matrix is a symmetric matrix ! where

nodes are displayed as columns and rows. A link between node ! and ! is depicted as a grey

square at position !!,! and !!,!. Adapted form Gehlenborg and Wong (2012).

Node-link diagrams are putatively the most popular visualization method for

drawing graphs. In their basic form node-link diagrams are comprised of point marks

and lines, representing nodes and relations respectively. The position of nodes is

generally unconstraint and depends on the layout algorithm (Figure 2.10, 1). Concerns

 17

that play a role in choosing the layout algorithm are the number of edge crossings or

the relative distance from a chosen root node. The layout can also be motivated by the

data type to be visualized. For example, interactions between mitochondrial DNA

might be visualized using a circular layout. Force-directed node-link diagrams are

highly effective in representing the topology–due to the combination of proximity

and connectedness.

Matrix-based representations of graphs or networks show the relation of

nodes via adjacency lists (Figure 2.10, 2). Matrix-based methods tend to be more

scalable compared to node-link diagrams but do not convey the topology well.

In the special case that the graph represents a tree, i.e. an undirected and

acyclic graph, containment or enclosure idioms, such as tree maps, can be used as

well. The web page http://treevis.net (Schulz, 2011) contains a large and up-to-date

collection of the various kinds of tree visualizations. A subset of 2D visualization

methods for trees is illustrated in Figure 2.11.

Figure 2.11: Screenshot of current 2D visualization techniques for tree data. Adapted from

TreeVis.net (Schulz, 2011).

2.2.2 Set-typed visualization

Often the data to be visualized is categorical or set-typed. One could even argue that

any kind of data can be categorized according to some attribute. Attributes that define

membership could literally be anything. For example, biomedical data can often be

categorized by gender, measuring technology or some expression level interval. The

main reason for visualizing set-typed data is to help the user understand the nature

of categorization.

 18

There are two different types of questions that are of key importance. First,

questions about the member elements such as which element is contained in most

sets or which element is always associated with a specific attribute. Second, questions

about the sets themselves, such as the set’s size or relations between different sets

like complement, containment, exclusion and intersection. Most often set-typed data

visualization should facilitate answers about the membership across multiple

different categories. Visualizing the membership of documents in different categories

can help the user to quickly understand the nature of the data collection.

Categorizing data is especially very useful for browsing a large collection of

elements as it allows the user to filter down before inspecting the relevance for each

element separately. Also, hierarchical sets, i.e. sets that include other sets, can

provide a level of abstraction and keep exploration of many elements perceptually

feasible. A thorough review of set-typed visualization techniques is provided by

Alsallakh et al. (2014).

The two most commonly used and oldest visualization techniques for set-

type data are Euler and Venn diagrams as shown in Figure 2.12 (1 & 2). Leonard Euler

has invented Euler diagrams in the 18th century, while John Venn invented the

similar Venn diagram in 1880. Both techniques visualize the membership of a

collection of elements through closed circles of any shape drawn on a plane. Elements

that belong to multiple sets are visualized by overlapping sets. The main difference

between Euler and Venn diagrams is that Venn diagrams require 2! distinct zones for

! sets, even when some zones represent empty set intersections. The greatest

advantage of Euler and Venn diagrams is that they are typically understood without

any explanations due to the principle of common region (Palmer, 1992). Humans tend

to perceive special partitioning more easily when depicted by closure than proximity or

similarity. The biggest limitation of both techniques is that they do not scale well

beyond four categories. Many variations of Euler and Venn diagrams have been

proposed but all are based on the same concept of using closed areas to visually

indicate set membership. Node-link diagrams are another way to visualize set-typed

data (Figure 2.12, 3). The membership can either be shown by drawing links between

elements and sets (Figure 2.12, 3a) or by drawing a direct link between members of a

set (Figure 2.12, 3b) (Alper et al., 2011). Sometimes links are enlarge in such a way that

they additionally include common region principle such as in Kelp diagrams (Dinkla et

al., 2012) or Bubble sets (Collins et al., 2009). Techniques that solely rely on the

common region principle are available too (Dinkla et al., 2014) (Oelke et al., 2014). A

third approach to illustrate set-typed data is using matrix-based techniques. Matrix

views are used in different ways to depict membership (Figure 2.12, 4). One way is to

represent elements and sets by rows and columns and highlight a cell !!,! if element !
is part of set ! (Kim et al., 2007). Another visual metaphor used in matrix-based

visualization is plotting sets as rows and columns and creating a heat map, which

represents the overlap between sets (Sadana et al., 2014). Some approaches combines

 19

different methods, such as UpSet (Lex et al., 2014), which uses a matrix where each

column represents a set and each row depicts set combinations.

Figure 2.12: Basic principles of set-typed visualization. (1 & 2) represent methods following the

common region principle. (3) Node-link diagrams facilitate sets via connectedness. (4) Matrix

diagrams depict sets via columns and membership via rows.

2.3 Ontologies
Originally, ontology is a field of philosophy that is concerned about the how objects of

the real world can be formally described, grouped, and related to each other given

their characteristics. The study of ontologies is hundreds of years old and is rooted in

Greek philosophy. Tom Gruber established ontologies in the field of computer science

in 1995 as a model for sharing knowledge (Gruber, 1995). Gruber also coined the

famous and shortest known definition of ontology:

“An ontology is a specification of a conceptualization.”

Gruber (1993)

Thus, ontologies–in the domain of computer science–can be regarded as a

set of definition over a set of concepts described with controlled vocabularies. The

goal is to facilitate reuse and sharing of knowledge. As such, ontologies are a powerful

tool for annotation of documents as well as semantic queries.

2.3.1 OBO and OWL

The two dominant languages for creating biomedical-ontologies are Open Biomedical

Ontologies (OBO) and Web Ontology Language (OWL). The OBO ontology language

was originally developed by Gene Ontology (GO) consortium and later emerged into

the OBO Foundry. OWL has been developed by the World Wide Web Consortium (W3C)

to provide a general tool for modeling web-based ontologies with the Semantic Web

(Berners-Lee and Hendler, 2001) in mind. Generally, OWL is more powerful and

features richer descriptiveness than OBO, since OBO had been designed for bio-

ontologies only.

The OBO ontology model consists of classes (also called terms), instances

and relationships. Classes model types of objects or real-world concepts and

instances of classes represent individual objects of a class. Relationships link classes

 20

and instances with each other. The most important class relationship type is is_a

between classes, describing the subclass relationship. Thus if B is_a A then all

instances that are of type B are also of type A. Other important relationships defined

by the OBO Relation Ontology are part_of, develops_from, and adjacent_to. In general,

relationships can be directional, symmetric, transitive or cyclic. Also, certain

relationships can be used to relate other relationships. For example, the relationship

inverse_of can be used to model has_part as the inverse of part_of. OBO also defines

domain and range related, indirect subclass relationships. For example, given the

fictional relationship translated_by_RNA_polymerase, the domain (i.e. source class)

could be defined as the class DNA while the range (i.e. target class) would be RNA.

Given the statement A translated_by_RNA_polymerase B, we can be inferred that A

is_a DNA and B is_a RNA. OBO supports a number of different metadata attributes

such as an identifier, a name, synonyms, cross-references, definitions, comments or

a namespace to be associated with a term, relation or instance. A term’s identifier is a

strings in the form of IDSpace:ID, where IDSpace is the ontology’s acronym. E.g.

CL:0000653 stands for term number 0000653 of the Cell Ontology (CL).

OWL builds on top of the Resource Description Framework (RDF), which

models the information about resources in the World Wide Web. In RDF information

is defined as triples of the form: subject predicate object. Each triple defines a

statement, i.e. one single piece of information. RDF statements can also be

interpreted as a directed labeled graph with the subject representing the source node,

the object being the target node and the predicate indicating the directed edge.

(Figure 2.13, 1) The subject and predicate must be resources while the object can

either be a resource or a literal value; e.g. string, number or Boolean. Resources are

defined objects or concepts of any kind that are uniquely identifiable via a Uniform

Resource Identifier (URI). Since RDF has been developed for the World Wide Web

most resources correspond to web pages but they can literally be any kind of concept.

Multiple RDF statements intrinsically form a directed, labeled, multi-relational

graph. By itself RDF doesn’t impose any semantics and is merely a data model. RDF

schema (RDFS) defines some basic vocabulary to create ontologies. Specifically, RDFS

provides means to describe classes, properties (i.e. relationships), enables direct sub-

and super classing, and indirectly exposing a class hierarchy via domain and range

rules. By being able to create a class hierarchy, RDFS also provides inference of new

statements that are implied by asserted statements. The most prominent inference is

engendered by the transitive nature of the class hierarchy (Figure 2.13, 2).

 21

Figure 2.13: Example and differences of RDF and RDFS.

OWL is even more expressive compared to RDFS by extending the vocabulary

and inference rules further. In addition to defining classes directly via a URI, it is

possible to indirectly define classes via enumeration of all instances, property

restrictions, intersections, union of multiple classes or the complement of another

class. Especially property restrictions appear often in the biomedical domain. For

example, the Cell Ontology (CL) has two essential object properties for expressing its

class hierarchy: subClassOf and develops_from. The develops_from property is

expressed by a property restriction. The following simplified expression is taken from

CL and describes a typical develops_from relationship:

1 <owl:Class rdf:about="CL:0000005">

2 <rdfs:label>fibroblast neural crest derived</rdfs:label>

3 <rdfs:subClassOf>

4 <owl:Restriction>

5 <owl:onProperty rdf:resource="RO:0002202"/>

6 <owl:someValuesFrom rdf:resource="CL:0000333"/>

7 </owl:Restriction>

8 </rdfs:subClassOf>

9 <rdfs:subClassOf>

10 <owl:Restriction>

11 <owl:onProperty rdf:resource="RO:0002202"/>

12 <owl:someValuesFrom rdf:resource="CL:0000008"/>

13 </owl:Restriction>

14 </rdfs:subClassOf>

15 </owl:Class>

Here the fibroblast neural crest derived cell (CL:0000005) is described to

develop from (RO:0002202) the migratory neural crest cell (CL:0000333) in lines 3 to 7

 22

and from the migratory cranial neural crest cell (CL:0000008) in lines 9 to 14. An

extensive introduction to bio-ontologies is provided by Robinson and Bauer (2011).

Currently the OBO Foundry (Smith et al., 2007) lists 137 ontologies and

BioPortal (Whetzel et al., 2011) has 503 ontologies. The following twelve ontologies

are used for data set annotation in this project: BRENDA Tissue and Enzyme Source

Ontology (BTO), Chemical Entities of Biological Interest (CHEBI), Cell Ontology (CL),

Experimental Factor Ontology (EFO), Foundational Model of Anatomy (FMA), Gene

Ontology (GO), Mouse Adult Gross Anatomy (MA), NCBI Taxonomy (NCBITAXON),

NCI Thesaurus (NCIT), Ontology for Biomedical Investigations (OBI), Phenotypic

Quality (PATO), and Units of Measurement (UO).

2.4 Graph databases
Most database management systems (DBMS) are based on a relational modeling

where data is grouped by relations and organized by tuples. Colloquially, relations

stand for tables, which define a set of attributes (i.e. columns). Every data entry

represents a tuple of information. Usually each tuple is uniquely identifiable by a

unique attribute set called keys. The greatest deficit when working with relational

data, e.g. graphs, is that relational DBMS require joins for each relation to be

retrieved, which can quickly become a serious issue when more than a few relations

are assessed. Graph databases build upon relational DBMS by explicitly storing object

relationships instead of inferring them at query time. This characteristic makes graph

database more suitable for relation intensive queries.

Neo4J (http://neo4j.com) is the graph DBMS that is being used throughout

this project. It implements a property graph model, which consists of a graph

! = (!,!), a set of vertices ! and a set of edges !. An edge ! ∈ !; !!, ! ∈ !; !! = (!, !) is an

ordered pair of vertices representing a directed relationship from ! to !. Apart from a

normal direct graph, vertices and edges of a property graph model can be associated

with multiple key-value pairs. In addition, Neo4J adds labels and typed relationships

to allow grouping of nodes. Even though relationships need to have a direction, the

directionality does not matter. Neo4J allows traversing paths in any order. Figure 2.14

provides an example property graph and summarizes the ideas described above.

 23

Figure 2.14: Example property graph. Nodes and relationships can be associated with multiple

key-value pairs. The key-value pairs follow no explicit schema. Nodes can be grouped into sets

by assigning multiple labels.

2.5 Related work
Visualization of data repositories or large document collections have similar

requirements and goals compared with efforts of visualizing search results, since

search results represent an arbitrary subset of the document corpus. Additionally,

search visualization incorporates the notion of relevance. Ontology-guided

visualization of biological data repositories intersects with a number of different

research areas. In an attempt to provide a comprehensive overview, related work is

categorized into two main groups: problem-focused and visualization-focused

methods. Problem-focused projects are mostly concerned about applied challenges

while visualization-focused work is trying to enhance existing or develop new

visualization methods for a broader spectrum of applications.

Over the last two decades various different visualization methods have been

developed to support search. The tools can be divided into those that attempt to

visualize each result separately and those that try to provide an overview of the

complete search results. For example, TileBars (Hearst, 1995) and successors Insyder

(Reiterer et al., 2005) and HotMap (Hoeber and Yang, 2006) visualize the

approximated location of query term matches within each retrieved document and

thus provide a visual notion of relevance. Others illustrate the relative similarity of

search results by depicting each retrieved document as a glyph or simple visual mark

in a 2D or 3D space. The spatial location is determined via dimensionality reduction.

Similar documents should cluster together and form fuzzy groups or categories.

Examples for glyph-based visualization techniques that operate search results are

InfoSky (Andrews et al., 2004) and xFind’s VisIslands (Andrews et al., 2001). InfoSky

incorporates hierarchical classification of the documents and displays them in

 24

circular weighted Voronoi tree maps. On the other hand, some visualization methods

provide an abstract summary of the set of all retrieved documents. The

RelationBrowser++ (Zhang and Marchionini, 2004) visualized the overall and search

related abundance of categories using superimposed bar charts. The search engine

Grokker1 hierarchically categorized search results and provided a top-down filter

mechanism via a circular tree map of topics and subtopics. A tool called ResultMaps

(Clarkson et al., 2009) groups search results according to a hierarchical classification

and uses the tree map visualization to convey the hierarchy. Hearst (2009, see

Chapter 10) provides a comprehensive overview of the efforts in visualizing search

results.

Apart from that, a number of projects studied possibilities to visually

summarize the corpus data repositories and enable exploration. The following

examples focus on visual exploratory tools that utilize metadata or descriptive

vocabulary, i.e. tools that visualize categorized or set-typed data. InfoSky (Andrews et

al., 2004) that has been described above can also be used to explore a whole collection

of data. Hiérarchie (A. Smith et al., 2014) is a tool for visualizing hierarchical topic

models using sunburst charts to explore text documents. In a similar fashion,

Phenoblocks (Glueck et al., 2015) uses the SunBurst idiom to present the hierarchical

structure of the Human Phenotype Ontology (Robinson et al., 2008). The SunBurst

technique is basically a tree map laid out radially. Nils Gehlenborg has studied

ontology-guided exploration of ArrayExpress (Kolesnikov et al., 2015) as part of his

PhD dissertation. The prototype called ArrayExpress Explorer (Gehlenborg, 2010) uses

the tree map idiom to visualize and query ArrayExpress’ content by means of the EFO

(Malone et al., 2010).

Other work that indirectly relates to this thesis is more focused on

visualization techniques for graph, tree, or containment data. The variety of tree

visualizations alone is huge. As mentioned in Chapter 2.2.1 Hans-Jörg Schulz

maintains an extensive collection of numerous different visualization methods for

tree data (Schulz, 2011) (Figure 2.11). Tree maps (Johnson and Shneiderman, 1991) are

one of the most space efficient ways to visualize hierarchical data and have been

studied extensively. A major disadvantage of tree maps is that they do not

communicate the tree’s topology as well as node-link diagrams can. Elastic

Hierarchies (Zhao et al., 2005) has been developed to combine the strength of node-

link diagrams and tree maps. GrouseFlocks (Archambault et al., 2008) is another

attempt to combine the node-link idiom with circular tree maps.

1 Grokker had been shut down when Groxis ceased operation in 2009. The Internet Archive

provides a copy of Grokker’s tour, which contains screenshots and explanation of their

visualization tool.

https://web.archive.org/web/20090509164021/http://www.groxis.com/service/grokker/grokker

_tour.html

 25

3 Methods
Throughout this project the what-why-how analysis framework developed by

Brehmer and Munzner (2013) and later refined by Munzner (2015, see Chapter 2, 3 &

5) is used as a guidance for development. Hereby, what, why, and how correspond to

the data abstraction, needs and tasks, and the decision for the visualization design.

3.1 Data
The data that is primarily being handled by the Refinery Platform as a case study

comes from the Stem Cell Commons (Ho Sui et al., 2013). The Stem Cell Commons

have been initiated by the Harvard Stem Cell Institute to facilitate comparison of

stem cell experiments at the molecular and semantic level and provide a community

based platform for sharing data. The data had been manually curated and annotated

with twelve ontologies (Table 1) and is stored in the investigation-study-assay (ISA)

model (Rocca-Serra et al., 2010). Up to date the Stem Cell Commons consist of 201

data sets of which 199 are valid ISA-Tab files.

Ontology
Number of

terms

Number of data

sets annotated at

least once with

the ontology

(after importing)

Number of times

the ontology was

used for

annotation across

all data sets

Number of

terms used

for

annotation

BTO 5809 5 (5) 9217 3

CHEBI 61550 144 (141) 22114 6

CL 4789 101 (81) 6020 59

EFO 17238 45 (198) 785 17

FMA 103902 132 (0) 2351 22

GO 44049 33 (32) 41 2

MA 3229 3 (3) 22 2

NCBITAXON 906907 201 (198) 4035 4

NCIT 116762 59 (58) 749 10

OBI 2932 201 (198) 462 9

PATO 2457 6 (3) 8 1

UO 331 58 (25) 14847 7

Table 1: Ontology usage across Stem Cell Commons. The difference of ontology usage per data

set between before and after importing is due overlaps among ontologies, e.g. the EFO covers

almost all terms from other ontologies that have been used for annotation, and annotation

issues, e.g. sometimes ISA-Tabs ontology sources and identifiers do not match. Note that the

FMA annotations could not match any data set because of outdated identifiers. The FMA uses at

least three kinds of URI schemas and while mapping is certainly possible, it is out of the scope

of this thesis.

 26

3.1.1 Data abstraction

The goal of this project is to enhance exploration of biological data repositories by

illustrating semantic relationships across the entire repository and search results.

Since it is not the goal to visualize search or ontologies but their relationships the

data needed to be abstracted to clarify their relationships. Each ISA file represents an

investigation with studies and assays, each related by a one-to-many relationship,

e.g. one investigation can have multiple studies and each study can host multiple

assays. In terms of exploration a data sets is regarded as an atomic unit, meaning that

this project only focuses on inter and not intra data set exploration. Thus, a data set

can be seen as a set of raw data files (Figure 3.1, 1), which have been annotated with a

set of ontology terms (Figure 3.1, 2). Additionally, studies and assay can have multiple

annotations as well. Finally, only those ontology terms that are associated with data

sets are of use for exploration. This leads to a complex annotation set hierarchy

illustrated in Figure 3.1 (3). Terms that are not used for annotation and which are not

compliant with equation 3.1 are removed.

Therefore, the abstracted data to be visualized can be described as an

ontology-guided containment multi-hierarchy. The transitive nature of subclass

relationships defines the subsumptive containment hierarchy of ontology terms. E.g.

the term podocyte is a subclass of epithelial cell, which in turn is a subclass of cell.

Hence, podocyte is also a subclass of cell. In terms of data set exploration this means

that any data set that has been annotated with podocyte should also be listed when the

higher-level term cell is browsed.

Figure 3.1: Abstract data model. (1) List of data sets. Each data set can consist of multiple raw

data files. Raw data files, assays or studies can be annotated with ontology terms. (2) The

original topology of the ontology used for annotation. (3) Compressed annotation set hierarchy.

The four main branches are indicated by colored contour lines. The set hierarchy is not

equivalent to a tree as some sets can be subsets of multiple other sets; e.g. N is a strict subset of

G and C.

 27

3.1.2 Data Processing

Ontologies can be represented as directed, and in most cases acyclic, graphs. The

most important property in terms of exploration is the number of data sets that are

associated with an ontology term. Given a graph ! = (!,!) with ! representing the set

of vertices and ! representing the set of edges linking two vertices, we denote the

number of times a term ! has been used to annotate a data set as the size of the term

related node !! . Since only real-world concepts should be illustrated, satisfiable

classes are considered only, i.e. nodes that are reachable from the global root node

OWL:Thing. By having a unique root node, we expose an indirect order on the node set.

The length of the shortest path of a node ! to the root is defined as the distance of !.

The ontologies used for annotation of data sets each describe a large domain

but the actual terms that have been used for annotation are relatively few compared

to the overall number of terms. For example, the Stem Cell Commons uses 142 out of

1269955 terms only. Since the goal of an exploration tool is to provide means for

finding data sets and understanding the composition of data collections, ontology

terms that have not been used for annotations should not be shown unless they

account for a stem to nodes of size greater than zero. Thus, to provide efficiently

visualization methods the ontology graph needs to be pruned. A set is only of use if its

size is different from its superset’s size. Mathematically this means that we need to

ensure a strict containment set hierarchy. Given three terms !, ! and ! where ! is a

subclass of ! and ! is a subclass of !. The terms’ set representation !!, !! and !! must

be compliant with:

 S! ⊂ !! ⊂ !! (3.1)

In addition, the tree map visualization method conveys the hierarchical order

by containment; data to be visualized needs to come in form of a tree rather than a

graph. Although the list graph methodology use the visual metaphor of node-link

diagrams, the hierarchy is illustrated by placing nodes from left (the root) to the right

(leaves). Depending on the complexity of the graph, it is possible that a node could be

placed in multiple different columns, as there might be different path to the very

root. To avoid visual clutter links only go in one direction: from superclass (left) to

subclass (right). Thus, nodes with multiple parents whose distance are not equal are

duplicated. (Figure 3.2)

 28

Figure 3.2: Graph manipulations. (1) Leafs and inner nodes of size zero are deleted. The

cumulative size includes the sum of the size of all child nodes. (2) Node duplication for the tree

map visualization. Inner nodes with a size greater zero need to be duplicated as child nodes to

themselves. Also, nodes with multiple parents are duplicated for each parent to provide a

unique path to the root. (3) The list graph visualization only requires nodes to be duplicated

when their parents’ distances to the root are not the same. Therefore, node F is duplicated

because the distance of node C and G is not equal. On the other hand, node G is not duplicated

because the distance of nodes D and E is the same.

3.2 Design

3.2.1 Requirements & Tasks

The first step in designing novel visualization methodologies is to compile a set of

requirements that formalize the needs and tasks to be addressed. Requirements are

often predefined to some degree by previous work and later refined by expert

scientist working in the field of research associated with the problem. Therefore,

prior to the requirements analysis the main target users need to be determined. In

regards to exploration of biological data repositories, three primary and two

secondary audiences have been identified: data scientists and analyst, project leaders,

group leaders and funders, data curators, and developers. The five groups act as blue

print characteristics for user roles with different needs regarding an exploration

system. The roles are not meant to exclusively describe a user but rather the different

roles a user can reflect. For example, a person can be a data scientist and project

leader at the same time, having to fulfill two roles throughout the daily work.

The primary concern of data scientists and analysts is how data can be

turned into information and subsequently transformed into knowledge. Thus,

exploiting raw data to gain insides in the underlying biology mechanisms is of key

importance. The main focus of data scientists and analysts is to find the most

 29

relevant data as quickly as possible. Precise description and meta-information of data

sets is crucial in order to evaluate the relevance. The characteristics that define

relevance can vary greatly depending on the project. The main goal for finding

relevant data is to compile a data collection that can be analyzed to potentially

answer specific biological questions. Data might also be needed to expand in-house

generated data. Generally there are two categories of data to be collected: data that is

highly similar or data that differs significantly in some respect to existing data. For

example, more data might be needed to increase the overall quality and validity of a

finding. Data that differs could foster confidence about the robustness of a novel

method or it might act as a negative control. The data scientist’s exploration behavior

is illustrated in Figure 3.3 (1). To summarize, the needs of data scientists and analysts

are:

N1 Find data sets that match experimental characteristics.

N2 Find data sets that are similar or dissimilar to given data sets.

The project leader stands for the role model of somebody who leads a

research project. The focus of a project leader is to find suitable characteristics of data

sets that are crucial in successfully addressing the scientific challenges of a project.

The difference between the role of project leaders and data scientists is that project

leaders are more concerned about the general state of research and availability of data

that is closely related to the project instead of directly analyzing raw data. Therefore,

a project leader needs an overview of a collection of data sets that matches

experimental conditions (Figure 3.3, 2):

N3 Get an overview of groups of data sets that match specific experimental

conditions.

The role of the group leader or funder represents a person who manages and

leads a group of people or guides research fields. A group leader needs to have a

vision how the past, current, and future research work ties together and what the

overall goals are. Hence, project leaders constantly assess the current state of

research, find trends, develop novel hypothesis, and strategies how to further

contribute to the research field of interest. Even though funders are not directly

involved in research project, they need to evaluate the current state of research and

discover trends in order to make confident decision about how research fields can be

shaped in a way that the funding organization’s goals and aspirations are best met. In

conclusion both roles need to gain insights into the broader overview of a data

collection to discover broader patterns. For an exploratory application, the most

important requirement is to provide an overview over the whole or large parts of the

repository (Figure 3.3, 3).

 30

N4 Get an overview of the distribution the overall data collection or large subsets

of it.

Data curators are responsible for the quality of metadata and integration of

data sets across the repository, such as ontology annotations. Their needs are

resolving around the current state of curation and how it’s quality can be improved to

increase the benefits of data. Data curators are not concerned in finding data sets or

discovering trends in data generation but instead are interested in the overall

distribution and usage of annotation terms. For example, while an overview of the

term distribution describes the nature of the data collection it also gives insights in

how well certain areas have been annotated. Reason for biased annotation diversity

can be due to different annotation strategies over time or differently structured

ontologies. It can also point out parts of ontologies that need further specifications.

Observing those trends can facilitate better data curation (Figure 3.3 4).

N5 Get an overview of the annotation set hierarchy.

Finally, the developers of a biological data repository can benefit from an

exploratory tool in order to evaluate the current usage of the system. This is needed

to foresee future trends and plan appropriate changes ahead of time. Similar to group

leaders and funder, their goal is not to find specific data sets or small collections of

data sets but to understand the repository as a whole (Figure 3.3, 5). The need of

developers in regards to an exploration system is very similar to N4; the major

differences between developers, group leaders, or funders are the resulting actions

only.

Figure 3.3: Expected user exploration behavior. (1) Data scientists and analysts aim at locating

specific data sets. (2) Project leaders focus on a small specific group of data sets that

potentially help to answer their project’s biological questions. (3) Group leaders and funder

 31

examine the bigger picture of the overall repository. Compared to project leaders they are less

concerned about very specific details. (4) Data curators are primarily interested in annotations

instead of data sets. (5) Developers care about the system as a whole to foresee trends in data

generation.

The specific requirements are derived from the set of needs of the different

roles from above. All needs require some degree of understanding of subsets of the

repository. Subsets can either be retrieved through search or though term-based

browsing and querying. Understanding the composition of characteristics, i.e.

annotations, is crucial for understanding if and what to explore next. Hence, the

requirements are separated in those that describe the needs for understanding set

composition and those that are needed to successfully explore the data repository.

The following tasks are related to understanding and sensemaking of data collections:

T1 Determine annotation terms of a data set.

T2 Determine abundance of annotation terms of a group of data sets.

T3 Determine abundance of sets of annotation terms among a group of data sets.

T4 Determine annotation term containment relationships.

T5 Preview data set’s content.

The notion of relevant data sets (N1), i.e. data sets that significantly match a

desired experimental setup, can be achieved through the illustration of annotations

(T1) and by previewing a data set (T5). Showing the relationship between the ontology

terms (T4) that have been used for annotation can facilitate finding of related data

sets (N2). The abundance of single ontology terms (T2) and sets of ontology terms

(T3) aids understanding of search results and highlights patterns (N3, N4, N5).

Previewing certain details of a data set (T5) can further increase or decrease relevance

and help to find the desired data (N1, N2).

The following tasks are related to the process of actively exploring data

collections:

T6 Search for data sets.

T7 Query data repository by annotation term.

T8 Filter down a group of data sets according some annotation.

T9 Loosen annotation constraints.

Being able to search (T6) by keywords and query (T7) by ontology terms for

data sets is crucial in finding specific data sets as well as groups of data sets (N1, N2,

N3, N4). Drilling down search results by filtering according to some annotation terms

(T8) and drilling up by loosening constraints (T9) supports exploration through an

enriched search. Ranking annotations according to their abundance and size enhances

both: understanding of the nature of data sets (N3, N4, N5) by highlighting most

 32

abundant or most scarce terms, and facilitates exploration by providing a notion of

information scent (Pirolli et al., 2000):

T10 Rank annotations.

3.2.2 Interviews

Over the course of this project a small series of semi-structured interviews with data

scientists have been performed in order to better understand how users actually

search for data and to guide the design process. There are several ways to assess

which information is most important for the personal relevance of data. The two

main categories to distinguish are qualitative research and quantitative research.

Qualitative research in terms of the design process can help to understand the

problem and facilitate hypothesis generation. On the other hand, quantitative

research is often used to verify or compare hypothesis. For this project semi-

structured interviews have been chosen because the goal is to gain insights in search

behavior to assist further design processes rather than validating a final approach.

Semi-structured interviews offer a balance between open-ended and structured

interviews. The interviews have been guided by the following questionnaire:

Q1 Do you usually start searching at (a) a data repository such as GEO or

ArrayExpress, (b) a scientific journal database such as PubMed, or (c) both

depending on the context?

Q1.1 In case of Q1.b: Do you usually read the whole paper or is the abstract (plus

figures) sufficient for searching?

Q2 Briefly describe how you find relevant data through the steps described in

Q1.

Q3 Rate the following characteristics of a data set or study by (a) importance

and (b) how frequently it is important in regards to the relevance for search

from 1 to 5 (1 = irrelevant | never; 2 = rarely important | rarely; 3 = helpful |

sometimes; 4 = important | often; 5 = essential | always):

1. Technology

2. Sample size

3. Replicates

4. Data quality

5. Species

6. Organ or tissue

7. Cell type

8. Disease

9. Cell line

10. Marker genes

11. Protocol

 33

12. Original problem or goal

13. Publication date

14. Generating laboratory or group

15. Prominence or awareness

16. Technical popularity

Q4 Are there other characteristics that are important to the relevance of a data

set during search?

Q5 What are your primary purposes when searching for data?

Q6 Do you usually start your search (a) with a precise search query and loosen

constraints, e.g. by reformulation when you cannot find anything relevant,

or (b) with a broader search query and then specify the query?

Q7 Would it be useful to have an indicator of the number of data sets related to

a certain category, which has only been found partially? E.g. a search for

“liver” might not return all data sets related to “hepatic lobule” or

“hepatocyte”.

The first question (Q1) helps to shed light on current usage of web-based

data repositories and whether users have a general preference in searching data.

Question 1.1 is an extension to the first question and is used to provide an estimate for

how important a published manuscript is in regards to the data. The second question

(Q2) is an informal follow-up to the previous two questions and is used to get an idea

about the general search behavior of data scientist and analysts and is supposed to

give insights in the different steps taken during search. Even though the search

process is not assumed to vary significantly from what is already known, having an

overview of the users’ practices and preferences can be useful to ensure successful

adoption of a new exploration system. The next question (Q3) is most structured and

part of the questionnaire in order to assess importance of different experimental

factors and meta-characteristics of a data set for relevance. Items Q3.1–Q3.4 are

related to the technical aspect of a data set. The next six items (Q3.5–Q3.10) describe

common characteristics of the biological sample. The last five aspects (Q3.11–Q3.14)

reflect meta-characteristics of the overall study and laboratory that conducted the

project. Question Q3.15 is about the overall prominence of a data set, the researchers

behind the project or any other characteristic. In Q3.16 popularity is regarded as the

number of views, downloads or analysis that have been run on a data set.

In total nine data scientists have been interviewed. Due to the small number

of participants, the results presented here should be regarded as an indicator only.

Regarding the starting point for search (Q1), every interviewee indicated to start

searching for biological data by means of literature search at common literature

databases such as PubMed. Four out of nine researchers stated that this is their only

way of searching, while the other five data scientists said that they sometimes start a

search directly at a data repository when looking for specific data types; e.g. large

 34

consortium data like The Cancer Genome Atlas (Koboldt et al., 2012) or the Genotype-

Tissue Expression (Lonsdale et al., 2013). When starting the search at a literature

database, six out of the nine people indicated that they will focus on the authors,

abstract and figures first and read the whole paper only if necessary to understand

the data (Q1.1). They might also choose to read the whole paper regardless of the

search process when it is of general interest. The other three scientists mentioned

that they read the whole paper before downloading any data. The next question

provided insights into putatively common search patterns. Three interviewees stated

that when they are looking for large consortium data they normally go directly to the

consortium’s website directly since they know the data already or the general

publication does not provide much information. On the other hand, when looking for

data that has been generated by individual laboratories they tend to find the

publication first in order to understand the data and find its location. One researcher

mentioned that a publication also serves as a basic quality control, i.e. data without a

publication appears to be less trustworthy. Question 3 highlights two aspects of the

important characteristics of a data set during search: first, the importance heavily

depends on the project and second, some characteristics are generally more relevant

than others. According to Q3, key criteria for relevance of data sets are: technology,

data quality, species and tissue. Furthermore, cell type, disease state, cell line and

prominence have been highly rated. Characteristics are regarded to be important when

at least more than half of the people consider it to be essential and more than two

third of the interviewees consider this criterion to be of importance frequently. The

results are also interesting as they showed differences between researchers trained or

working in wet laboratories and dry laboratories. Harald Stachelscheid–an induced

pluripotent stem (iPS) cell core facility group leader–mentioned the importance of

marker gene expressions and differentiation or reprogramming protocols in iPS cell

research but both characteristics have not been regarded as highly import by the nine

computational data scientists. Table 2 provides an overview of the mean ratings, box

percentages, standard deviation, Z-score and percentile of each sub question. Other

characteristics (Q4) mentioned by interviewees are the connection between the user

who is searching and the laboratory that publish or generated the data, the absolute

proximity of the data to the user’s laboratory and journal information in which the

data set has been published. The information regarding connections between the user

and authors is closely related to Q3.14. According to the data scientist, proximity is

important for wet laboratory-related research as it makes potential cooperation

easier. The journal in which data sets have been published acts as a quality indicator

(Q3.4). Question five (Q5) was included to better understand what kind of data sets

scientists are targeting in search. Apart from the fact that data scientists who do not

have in-house generated data need to collect data prior to analyses, all researchers

mentioned that they search for data that is similar in regards to most characteristics

but differs in respect to few attributes in order to compare results. Four data

 35

scientists mentioned that they sometimes search for data that is highly similar in all

ways in order compare the quality among data sets. Question 6 indicated that both

exploration principles–drill-down and drill-up–are important but a majority of

interviewees prefers to start with a specific search query and only loosens constraints

when no relevant data has been found. One data scientist uses the same tactic when

looking for one specific data set but starts with a generic query and drills down when

composing a collection of multiple data sets. Two interviewees mentioned that they

also start with a generic search by means of finding a review paper if the targeted

area of research is unfamiliar. One researcher stated that her search tactic heavily

depends on the previous experience. The researcher either chooses to start specific

and drill up or to start generic and drill down depending a personal estimation of the

search efficiency. In regards to the last question (Q7), five scientists stated that it

might help to have an estimate of undiscovered data that is still closely related but

broader. Two people answered that they are not sure how much this kind of metric

would help during search but are curious to test it. The other two researchers have

been unable to answer this question.

 36

Q3.1 Q3.2 Q3.3 Q3.4 Q3.5 Q3.6 Q3.7 Q3.8

 IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ
Mean 4.4 4.4 3.3 3.3 3.3 3.8 4,7 4.9 4,4 4.6 4,0 4.8 3,8 4.3 4,1 4.1

5 56% 56% 11% 22% 22% 33% 89% 89% 56% 67% 63% 75% 33% 33% 44% 56%
4 33% 33% 33% 11% 22% 33% 0% 11% 33% 22% 13% 25% 33% 67% 33% 11%
3 11% 11% 33% 44% 22% 11% 0% 0% 11% 11% 0% 0% 22% 0% 11% 22%
2 0% 0% 22% 22% 33% 22% 11% 0% 0% 0% 13% 0% 0% 0% 11% 11%
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 13% 0% 11% 0% 0% 0%

5 & 4 89% 89% 44% 33% 44% 67% 89% 100% 89% 89% 75% 100% 67% 100% 78% 67%
2 & 3 11% 11% 56% 67% 56% 33% 11% 0% 11% 11% 13% 0% 22% 0% 22% 33%

SD 0.73 0.73 1.00 1.12 1.22 1.20 1.00 0.33 0.73 0.73 1.60 0.46 1.30 0.50 1.05 1.17
Z-score 1.37 1.37 -0.11 -0.10 -0.09 0.27 1.22 4.32 1.37 1.53 0.34 2.81 0.25 1.77 0.63 0.57

Percentile 92% 92% 45% 46% 46% 61% 89% 100% 92% 94% 63% 100% 60% 96% 74% 72%

 Q3.9 Q3.10 Q3.11 Q3.12 Q3.13 Q3.14 Q3.15 Q3.16

 IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ IMP FREQ
Mean 3.3 4.1 1.9 4.2 3.0 4.2 3.0 3.8 3.0 3.4 3.0 4.1 3.2 4.3 2.7 4.4

5 11% 22% 0% 56% 0% 44% 11% 44% 22% 14% 0% 33% 0% 44% 0% 56%
4 44% 67% 11% 22% 44% 33% 11% 11% 22% 29% 33% 44% 56% 44% 22% 33%
3 22% 11% 11% 11% 22% 22% 44% 22% 11% 43% 33% 22% 11% 11% 33% 11%
2 11% 0% 33% 11% 22% 0% 33% 22% 22% 14% 33% 0% 33% 0% 33% 0%
1 11% 0% 44% 0% 11% 0% 0% 0% 22% 0% 0% 0% 0% 0% 11% 0%

5 & 4 56% 89% 11% 78% 44% 78% 22% 56% 44% 43% 33% 78% 56% 89% 22% 89%
2 & 3 33% 11% 44% 22% 44% 22% 78% 44% 33% 57% 67% 22% 44% 11% 67% 11%

SD 1.22 0.60 1.05 1.09 1.12 0.83 1.00 1.30 1.58 0.98 0.87 0.78 0.97 0.71 1.00 0.73
Z-score -0.09 1.10 -1.48 0.71 -0.40 0.93 -0.45 0.25 -0.28 -0.02 -0.52 0.85 -0.23 1.25 -0.78 1.37

Percentile 46% 87% 7% 76% 34% 82% 33% 60% 39% 49% 30% 80% 41% 89% 22% 92%

Table 2: Evaluation of data set characteristics. IMP stands for importance and FREQ stands for frequency. Marks 4 and 5 have been combined as an indicator for

general importance and marks 2 and 3 have been combined to represent minor importance. The Z-score is based on the overall mean of importance and

frequency ratings.

 37

3.2.3 Tree map

Tree maps (Johnson and Shneiderman, 1991) are a 2D space-filling visualization

technique for hierarchical data that provides an concise overview of set sizes (N4).

The design decisions described in this chapter build upon ideas presented in Nils

Gehlenborgs PhD thesis (Gehlenborg, 2010). The tree map visualization technique is

only able to handle mono hierarchies or trees, i.e. each nodes of the hierarchy can

only have exactly one parent. Each node ! of the hierarchical data is visually

represented by a rectangular !!. Each rectangular !! is associated to a size !"#!! !! of a

node property !; e.g. for set-typed hierarchical data this can be the set size (T2). But

any other value can be chosen as well. For inner nodes !!! the rectangle’s area is

equivalent to the subsumed size of the node’s children’s sizes, i.e.

!"#$(!!!) = !"#$(!!!)! where !!! represents the children. In order to successfully

visualize a directed graph as a tree map, the graph needs to be transformed as

described in Figure 3.2 (2). An example transformation and visualization is given in

Figure 3.4.

Figure 3.4: Graph to tree and tree to tree map conversions. For simplicity edge directions have

been omitted. All edges are directed top-down and represent superclass to subclass

relationships. (1) Node duplication per superclass, e.g. F is duplicated. (2) The tree map

visualization technique represents the parent as a common area of the children and thus

cannot be larger than the sum of the area of its children. Therefore, any node with a direct size,

such as node C, needs to be cloned as a child of itself in order to visually accommodate its true

size. (3) Example drawing of the ordered tree map of the final tree.

In regards to ontology-guided exploration the graph structure to be

visualized is the pruned containment set hierarchy derived from the original ontology

(Chapter 3.1.3). The number of data sets that have been annotated with a term is used

as the property to be visualized by size. Originally the tree map visualization focused

on the presentation of the whole tree, effectively only showing leafs. Since even a

single ontology can have tens of thousands of terms it is not useful to show all leafs

 38

at once. Therefore, recursive zooming is added. Hereby, the tree map layout is only

constructed up to a certain depth and all nodes at that depth are considered to be a

leaf. There are two ways to zoom into a tree map: branch-based zooming and level-

based zooming. In branch-based zooming the user selects one of the rectangles as the

new root node. The zoomed tree map then lays out in respect to the newly selected

root node (Figure 3.5, 2). In level-based zooming the visible depth is increased;

hence, showing farther nodes (Figure 3.5, 3). Providing means of zooming is

important to address the user’s needs to gain an overview at different levels of detail

(N3 & N4).

Figure 3.5: Tree map zoom. (1) Tree map showing the first level of child nodes of root A. Nodes

with a light dark border and bold font indicate inner nodes. (2) Branch B has been zoomed in

and now reflects a new tree map with the root being B and subsequently being F. (3) The visible

levels of the original tree map has been increase from one to two and two to three, showing all

inner nodes at this level and all leaf nodes up to this level.

In addition to the node’s size, a second numerical property can be illustrated

simultaneously by manipulation of another channel. Since tree maps already use size

(i.e. area), position, and shape, there are only a few channels left such as color and

motion. Motion is an highly effective channel to make an element pop out from the

its surrounding when used sparsely but it quickly looses it’s effectiveness when used

often. It is also hard to recognize subtle differences in movement to judge the

numerical value behind it. Therefore, color luminance, saturation and hue are better

suited for visualizing a numerical value. Hue can be effective for continuous regions

but is less well suited for comparisons across different spatial regions–as it is the

case for tree maps. Also, hue is more effective to illustrate categorical data.

Gehlenborg (2010) successfully used a branch color scheme in order to

simultaneously visualize categories. Figures 3.4 and 3.5 show branch coloring by

alternating the color’s hue. This can be an effective tool in distinguishing different

branches. A problem arises when the number of possible starting branches is too high

or too low or when the starting branches are not well defined. Since this project does

not aim at a very specific ontology but uses all or a subset of various ontologies for

 39

visualization, it cannot be guaranteed that the initial branches truly mark different

categories. Also, the final tree structure heavily depends on the annotations; some of

the branches at the first level might not correspond the original categories due to

pruning. Furthermore, introducing several hues comes at the expense of decreasing

the salience effect of color for highlighting annotations when the user interacts with

either the visualization or the list of data sets. Finally, luminance and hue are no

independent channels and their perceived value heavily depends on the context in

which they appear. To conclude, a grey scale is suited best for luminance comparison

between different spatial regions and the color channel’s salience remains high for

highlighting nodes that the user interacts with. In respect to exploration the longest

path from a node to its descendant leaf nodes is visualized using a restricted grey

scale to indicate the size of the hidden explorable space (Figure 3.6). The grey scale

ranges from a light grey that is used for leaf nodes to a dark grey used for nodes that

are far away from leafs. Both extremes–black and white–are not used. White is

already used as a background color and black is spared for the sake of highlighting

nodes in interactions. In addition to the luminance, inner nodes are visually separated

from leafs by adding a subtle border. The difference between the grey of a leaf nodes

and nodes with one child node can be hard to perceive. A border helps to distinguish

between nodes than provide further exploration options from leafs that mark the end

of the exploration process in terms of annotation specificity. The coloring schema for

text incorporates the Web Content Accessibility Guidelines (WCAG) 2.02 contrast ratio

between a rectangle’s background color and black or white to ensure the highest

legibility of labels possible (Figure 3.4, 3.5, and 3.6). The guideline is a W3C

recommendation and provides a formula to approximate the perceived contrast

between two colors, which is not equal to their technical contrast level. Additionally,

in order to be able to distinguish between different branches, the space between

rectangle increases by the distance to the common ancestor node and subtly conveys

the class hierarchy (T4). For example, in Figure 3.6 (2) the common ancestor of A.1

and B.1 is the root node and for both nodes the distance to the root is two. On the

other hand, the common ancestor of A.1 and A.2 is A. The distance between A.1 and A.2

to A is only one. Therefore, A.1 and A.2 are placed closer together than A.1 and B.1.

According to the Gestalt principles discussed in Chapter 2.2, proximity provides a

notion of togetherness, helping users to mentally group elements.

2 https://www.w3.org/TR/WCAG20/

 40

Figure 3.6: Tree map coloring, labeling and spacing.

The principles of the tree map visualization method have not changed much

since their discovery (Johnson and Shneiderman, 1991). Most work related to this

technique went into layout algorithms. The algorithms mostly differ in the average

aspect ratio of the rectangle they generate, the spatial stability, and their ability to

preserve the input order of nodes. The most commonly used algorithms are slice-and-

dice (Johnson and Shneiderman, 1991), Squarified (Bruls et al., 2000) and Generalized

Treemaps (Vliegen et al., 2006). Generally the desired aspect ratio should be low and

both the spatial stability and ordering are ideally high but the three characteristics

are negatively correlated. Also, a low aspect ratio can harm legibility (Bederson et al.,

2002), e.g. if text labels are longer than the rectangle, a line break needs to be

introduced or the label is cut off. Higher aspect ratios allow for longer labels but too

high aspect ratios make it harder to perceive the correct node size. In this project the

Squarified tree map algorithm is used, given its relatively high stability and the low

aspect ratio. Technically the tree map visualization does not need to be rectangular as

demonstrated by Vliegen et al. (2006) but other shapes decrease space efficiency and

introduce distorted shapes which size is harder to estimate. Additionally, having a

rectangular layout adds the benefit of a natural element flow from the top left to the

bottom right, which can be used to order rectangles according to their size.

3.2.4 List graph

The list graph is a novel visualization algorithm for flat horizontal node-link

diagrams where each column or level can be seen as a list of nodes. The data to be

visualized is the same as for the tree map, i.e. directed graphs that describe a

containment hierarchy. The main difference to an ordinary node-link diagram is that

the list graph requires a strict direction of node relationships. For example, given

subclass relationships between ontology terms, it must hold that for all classes their

superclass is positioned only left or only right but not both. For this project the root

node is always located on the left and nodes representing subclasses are positioned to

the right. Related nodes are visually linked via lines to convey the hierarchy (T4).

 41

Another major difference is that nodes are aligned to the top instead of being

centered vertically. The list graph’s main purpose is to visualize ontology term

abundance among a collection of data sets in regards to precision and recall to give an

estimate of the most important annotations. The rational is that the term lists should

act like ranked lists of search result; hence, the most relevant terms should be shown

first. The benefit of this approach is that the user does not need to familiarize with a

new concept since ranked list are omnipresent in search result interfaces and most

file browsers. This aspect is considered to be highly important since new visualization

techniques introduce new cognitive load and can be time consuming to understand,

which might limit their use during the search process. While aligning nodes to the top

does not make the overall visualization more space efficient but it can significantly

decrease the space consumption for the top most important annotation terms.

Similarly to the idea of (Pickens et al., 2008) to distinguish between the retrieved

search results and the results the user is actively looking at, the list graph is supposed

to be an add-on visualization that provides relevant information regarding search in

a limited amount of space. Since users have been found to focus on the first couple of

search results only (Hotchkiss et al., 2007), the same can be expected to hold for

supportive search visualization techniques. For example, in Figure 3.7 the horizontal

(2) and list-like (3) node-link diagram consume the same overall space as indicated

by the grey border. In case the display space is limited only a fraction of the diagram

is visible (shown by the dashed red border) and the space efficiency of the list-like

node-link diagram is higher. Assuming that the nodes are sorted by relevance it is

obvious why it is desirable to see as many top nodes as possible. Having higher space

efficiency in terms of the relevant nodes that are visible, clearly comes at the cost of

comprehensibility of the graph topology; the vertical (1) and horizontal (2) node-link

diagrams better convey the topology compared to (3). Yet the topology of the list-like

node-link diagram is still easier to grasp than the tree map’s containment technique

(N5). In addition to aligning nodes to the top, the list graph adds level dependent

scroll bars to each level of nodes that exceeds the visible container. Here, a level

corresponds to all nodes that have the same distance to the root. The usefulness of

scroll bars has been studied by (Song et al., 2010), which showed favorable results for

a scroll bar to limit large fan-outs.

Figure 3.7: Layout comparison of node-link diagrams. Node size and spacing is constant among

all three layouts.

 42

The list graph focuses on the visual representation of two search metrics: the

percentage of data sets retrieved with a specific annotation in relation to all retrieved

data sets and the number of data sets with a specific annotated retrieved in relation to

the overall number of data sets with that specific annotation. The first can be

interpreted as precision and the latter represents recall. The list graph visualizes

these two properties using superimposed bar charts (Figure 3.8). The list graph allows

the user to sort each level of nodes, i.e. nodes with the same distance to the root node,

according to these two properties (T10). In order to indicate which property a column

is currently sorted by, a bar can be active or inactive. The visual representation of the

active and inactive state depends on two bar chart modes (Figure 3.8, 1 & 2). The

rational for having two modes is two-folded: First, having one bar compared to two is

less distracting and reduces the cognitive load. On the other hand, it is harder to see

the value of the inactive property that is only indicated by a superimposed vertical

line, hence when both values are important two bars are favorable. The other reason

for having two modes is that the final exploration tool should be beneficial for both:

search and browsing. When browsing data according to ontology annotations, recall is

always equal to one and thus does not need to be shown. In conclusion, having one

bar is ideal for browsing while two bars are preferable during search. The reason for

choosing bar charts is due to their high effectiveness for numerical data

representation, especially when they are aligned and scaled–as it is the case for the

list graph. Superimposing the bars over the nodes has the benefit of reduced space

consumption, which is crucial as the overall screen space is limited.

Figure 3.8: Term property visualization via superimposed bar charts. Currently two modes are

supported: (1) Precision is set as the active property and its related bar makes up the whole

node. Recall–the currently inactive property–is indicated as a superimposed line. (2) The two

properties are visualized using two separate superimposed bars within the same node where

each bar takes up half of the node’s height. The active bar is filled with a slightly darker grey

compared to the inactive bar.

 43

A term’s precision visualization and the size of its rectangle in a tree map are

strongly related since both convey the relative abundance of data sets annotated with

a term. The main difference is that the list graph can depict precision in relation to a

fixed area while the tree map visualizes the ratio among all rectangles such that the

total area is used. Figure 3.9 illustrates the difference between the tree map’s and list

graph’s property visualization principles. In both cases (1) and (2) the total number of

data sets that have been annotated with some ontology terms is equal to six and the

number of data sets associated with term A is the same. While the tree map looks

identical, the list graph’s superimposed bar chart conveys the relative abundance of

each term. The tree map does not provide any insights into the intersection of

annotated data sets. As a data set can consist of multiple studies with different assays

of various raw data files the intersection of term-related data collections can be high,

especially the more generic a term is.

Figure 3.9: Tree map versus list graph. The size of the tree map’s rectangles is compared to the

list graph’s precision bars.

Visualizing precision and recall can help to understand the outcome of a

search in regards to ontology annotation terms. Figure 3.10 illustrates four general

cases of a search in respect to one annotation term. The first case (Figure 3.10, 1)

shows that the text-based search almost perfectly retrieved data sets of a certain

characteristic, i.e. precision and recall are high. This can either be an indicator that

the search process can be stopped, to further drill-down via annotation term

filtering, or by further specifying the search query. In the second case (Figure 3.10, 2)

the search returns documents that still match the annotation term perfectly in terms

of precision but is too specific to match all data sets that have been annotated with

this term. If this annotation term is of desire then a possible action could be to loosen

constraints by generalizing the search query. In the third case (Figure 3.10, 3) all data

sets of the specific annotation term are retrieved but this characteristic is not very

specific in regards to the search query, i.e. recall is high but precision is low. Further

specifying the search query or filtering down the search by ontology-guided quarying

can help to exclude irrelevant results. In the final case (Figure 3.10, 4) the search

 44

query is unspecific to the illustrated annotation term. Recall and precision are low. In

this case a more thorough revision of the search query might be needed.

Figure 3.10: Different search result outcomes. The large rectangle represents the data

repository. Contained circles stand for data sets. The area shaded in light red indicates data sets

that have been annotated with a specific ontology term of interest. The inner rectangle or circle

bordered in black illustrates search results. The light grey area stands for retrieved data sets

that have not been annotated with the specific term, while the area filled with saturated red

contains retrieved data sets with the desired annotation term.

3.2.5 Preview

When exploring data collections with the goal of finding relevant data (N1, N2) it is

desirable to have a quick way to obtain a summary of a data set’s content in order to

verify whether this data set is really relevant or not (T5). Previewing the content of a

data set can be achieved in many different ways. Important aspects to be considered

are speed, simplicity and context preservation. Previewing a data set’s content should

be faster than opening the data set; otherwise the preview does not add any value.

Simplicity relates to the actions needed to open the preview; i.e. the fewer actions

needed the better. Context preservation helps to keep the cognitive load low when

scanning the summarized content and returning to the search results. By keeping

these aspects in mind, the data set preview has been integrated into the search

interface as a slide-in window that is visually linked to the search results and the data

set being previewed. Figure 3.11 illustrates the integration. A click on the right arrow

on the right of a search result will slide in a preview panel, which in turn pushes out

other content. The whole process is animated to assist comprehension of the

transition. Keeping the search results visible at all times helps to preserve the current

context. In general, the search interface is not altered in any way when previewing a

data set’s content.

 45

Figure 3.11: Data set preview integration.

The composition of the preview’s content has been designed with the

findings of the interviews (Chapter 3.2.2) in mind. The following metadata is shown in

the given order:

1. Short description

2. Technology & measurement type

3. Sample source & species

4. Number of files

5. Analyses that have been run on the data set

6. Reference: title, authors, journal, manuscript source, PubMed and abstract

7. Wet and dry laboratory protocols

3.2.6 Interactions

The three aspects of data set exploration described in Chapters 3.2.3, 3.2.4 and 3.2.5

are combined with powerful text-based search (T6) to form the final exploration

system to enhance findability and discoverability (N1). Figure 3.12 illustrates an early

mock-up of the integrated interface. The list of results (Figure 3.12, 1a), list graph

(Figure 3.12, 2a) and tree map (Figure 3.12, 2b) are linked via user interactions.

Hovering over elements of either panel will highlight the related parts in the other

two panels. The following is a list of interaction tasks:

I1 Hovering over a search result should highlights the corresponding

annotation terms of this data set. (T1)

I2 Hovering over a node of the list graph or rectangle of the tree map should

highlights all currently retrieved data sets that have been annotated with

this term.

I3 The relative root of the tree map should be adjustable; i.e. zooming by

 46

branch, and being reflected in the list graph.

I4 The visible depth of the tree map should be easily adjustable.

I5 Term highlighting should be lockable to allow comparison of different

terms.

I6 The list graph should be scrollable by level and globally draggable and

zoomable to uncover hidden areas.

Figure 3.12: Early mock-up of the final exploration interface. (1) Search panel with query input

field and results list (1a). Each retrieved data set is represented by an item in the list, consisting

of (1b) its title, a very brief description and a button for previewing the data set. (2) Exploration

panel comprised of the two visualization methods: the list graph (2a) and tree map (2b). The

tree map panel includes a linked node list of the path from the absolute root term to the

currently viewed root term.

3.3 Implementation
The exploration system is integrated into the Refinery Platform (http://refinery-

platform.org), which consists of server-side back-end storage applications, a

middleware controller application and a client-side front-end application. The

middleware application is the central part that connects the different components

and manages the logic. It is written in Python and builds upon the Django framework

(http://djangoproject.com). PostgreSQL (http://postgresql.org)–a widely used open-

source relational DBMS–is the main data storage for the Refinery Platform. It is

complemented by Neo4J’s graph database (http://neo4j.com), which additionally

stores ontologies and annotation data. Solr (https://lucene.apache.org/solr) is being

used as the IR system to provide a Google-like search experience. The server-side

storage and IR systems feature application programming interfaces that support the

representational state transfer architecture and communicate via JavaScript object

notation messages. Communication is routed through the middleware application to

 47

normalize requests. The front-end application handles most of the user interactions

and utilizes AngularJS (http://angularjs.org) to provide a rich user experience.

Visualizations are implemented in Hypertext Markup Language 5, Cascading Style

Sheets 3 and Scalable Vector Graphics and are mainly orchestrated by JavaScript (JS)

and Data-Driven Documents (Bostock et al., 2011). The AngularJS architecture is

similar to the server-side middleware application as it ties together the different

visualizations and other user interface components and manages the information and

event flow. The front-end application is build via Grunt (http://gruntjs.com). The

source code of the Refinery Platform including the exploration system, extensive

installation instructions, help, and background information is hosted on GitHub:

http://github.com/parklab/refinery-platform. The list graph has been implemented as

a separate application to support future reusability but is fully integrated into the

Refinery Platform via an AngularJS wrapper application. The list graph is

implemented in the latest version of JavaScript (known as ECMAScript 6 or 2015) and

is build by Gulp (http://gulpjs.com). The source code is available on GitHub as well:

https://github.com/flekschas/d3-list-graph. Both applications are continuously

integrated via Travis-CI (https://travis-ci.org) and the Refinery Platform features

several unit tests to ensure validity.

3.3.1 OWL to Neo4J parser

In order to access the ontology term hierarchy quickly, ontologies are converted in a

simplified graph structure and imported into Neo4J. For that a Java-based parser has

been implemented, which extracts the terms and their direct subclass relationships.

The parse utilizes the OWL API (Horridge and Bechhofer, 2011) and currently supports

OWL documents in the Extensible Markup Language format. Ontologies to be

imported are checked for validity using HermiT (Glimm et al., 2014) prior to

processing. The parser is implemented in Java 7, is compiled into a Java Archive via

Gradle (http://gradle.org) and continuously integrated via Travis-CI. The source is

publicly available at https://github.com/flekschas/owl2neo4j. In addition, to simplify

the collection and import of ontologies related to Stem Cell Commons a small utility

repository holds batch download and import instructions at

https://github.com/refinery-platform/ontology-imports.

In order to ensure data integrity, a minimal graph schema has been

developed to guarantee uniqueness of ontology terms. As listed in Table 3, nodes that

represent ontology classes are labeled by Class and must have a unique URI.

Additionally an index on the name property is added to accelerate lookups. In order to

keep track of imported ontologies, a meta node for each ontology is created and

labeled Ontology. Nodes being labeled with Ontology must have a unique URI and

acronym. OBO’s IDSPACE is commonly used as an acronym; e.g. GO is the IDSPACE of

the Gene Ontology and used as the acronym. OWL ontologies do not have the notion

of an IDSPACE but support prefixes.

 48

Label Constraint

Class URI must be unique

Class Index on property name

Ontology URI must be unique

Ontology Acronym must be unique

Table 3: Graph database schema constraints.

Additionally, each imported term is labeled by its ontology’s acronym. This is

similar to OBO’s namespace and helps to manage large numbers of ontologies. It

should be noted that no term is being duplicated but instead reused when importing

multiple ontologies. This has two benefits: First, many low level terms that are used

across various ontologies are merged into one node, significantly saving disk space.

Second, every query automatically includes all possible relationships over all

ontologies. The parser extract satisfiable classes, i.e. classes that do not equal

OWL:Nothing, and iterates over each class’ direct superclasses. Direct subclass

relationships do not include transitive relationships and are therefore preferable for

visualization purposes, since the transitivity should be illustrated by the visualization

explicitly. Additionally, the parser is able to extract existential quantification

properties (EQP) of subclass relationships.

 49

4 Results
The landing page of the Refinery Platform is illustrated in Figure 4.1. The dashboard

provides three main panels for data sets, analyses and workflows. All three panels

work similarly. The major difference of the data set panel is the ability to search and

explore data sets. Since this project focuses on ontology-guided exploration of

biological data only, other parts of the Refinery Platform will not be covered here.

Figure 4.1: Landing page of the Refinery Platform. (1) Data set panel. (1a) All currently imported

data sets are listed by their title. Glyphs depict basic ownership and sharing information. (1b)

Search is incorporated into the same interface and consists of a simple query input field. (1c)

The exploration panel can be activated via a click on Explore. (2, 3) The analyses and workflow

panels behave in the same way as the data set panel but do not feature search or exploration

tools yet.

4.1 Application
The different components of the exploration tool are shown in Figure 4.2. The data

set panel is explicitly kept identical to the landing page to provide a familiar context

and keep visualization methods as an add-on exploration tool. Hearst (2009, Chapter

1 & 3) states that search is an mentally intensive task by means of finding data and

sensemaking of results. Hence, the user interface should try to keep the cognitive load

minimal. The visualization panel (Figure 4.2, 2 & 3) expands from the data set panel

and pushes out the other content. The list graph (Figure 4.2, 2) and the tree map

(Figure 4.2, 3) share about two third of the screen. On the initial page load without

any search, the list graph and tree map show the repository-wide abundance of

annotation terms. Exemplarily, Figures 4.2–4.8 show the usage of cell type related

 50

ontology term annotations from CL. The exploratory visualization interface follows

the famous Visual Information-Seeking Mantra (Shneiderman, 1996) by providing

overview first and details on demand. Both visualizations are initialized with the

absolute root term, which in this case is native cell (CL:0000003). The currently active

root node is highlighted via bold black text and a softly glowing blue underline

(Figure 4.2, 3b). The list graph does indirectly highlight the root nodes as the nodes

being in the top left corner of the visualization. The list graph supports multiple root

nodes to be shown. Since not all data sets have been annotated with some ontology

terms a pseudo term called No annotations is added. No annotations is linked with the

actual root node native cell via a pseudo root node that is not shown as it simply

represents that repository as a whole. In order to help the user find the link between

the tree map’s rectangles and list graph’s nodes, the currently visible layer of inner

nodes in the tree map is shown in the list graph as the column with a light grey

background and slightly darker node borders.

Both visualization idioms feature a top bar for controls and extra information

(Figure 4.2, 2a & 3a). The list graph’s top bar consists of six global options: sorting by

precision, recall, and name as well as an option for each of the two bar chart

visualization modes and a button to show the whole graph at once. In addition, a click

on the right most arrow in the top bar will uncover options for sorting each level of

nodes by precision and recall individually (Figure 4.3). The current state of each top

bar setting is depicted by an icon next to it. Active settings are highlighted by

increased font weight, text underline and a darker font color.

The tree map illustrates the number of data sets associated with a term by

the size of a rectangle and sorts them in descending order; hence, the largest

rectangle is listed top left. The rectangles’ area reflects the ratio between all visible

terms’ sizes. The color of a rectangle indicates the distance of the farthest leaf node.

Both channels provide an immediate motion for how many data sets are associated to

a term and how much many more sub terms can be explored. The list graph directly

visualizes related sub terms via a line between nodes and the precision bar depicts the

number of data sets relative to the active root term. Subclass relationships are all

drawn in the same direction from left (superclass) to right (subclass). Terms with

multiple parents are duplicated when the parents’ distance to the root is not equal.

Duplicated nodes are illustrated by a dashed rather than a solid node border. To avoid

clutter, sub graphs of duplicated nodes are omitted, instead the first instance, which

is closest to the root node, provides the sub graph only.

 51

Figure 4.2: Exploration interface. (1) The left part of the interface remains unchanged

compared to the landing page. The right part is divided into (2) the list graph and (3) the tree

map panel. The list graph consist of the main visualization and a top bar (2a). The tree map is

similarly composed of a top bar and the main visualization below. The top bar features

breadcrumb-inspired path view to the absolute root term (3b) and an input field to increase the

depth for zooming (3a).

Figure 4.3: Column-wise sorting. (1) A click on the arrow uncovers column-wise sorting

settings. Each column of nodes can be individually sorted by precision (2) or recall (3).

 52

Hovering a button will highlight that column’s nodes’ attribute (2 & 2a). A click on either

button will toggle through ascending and descending sorting modes. The current sort order is

depicted by an icon next to the button that triggers sorting (2 & 3). Other columns will remain

unaffected (2b).

There are many interactions that connect the list of data sets, the list graph,

and the tree map. Since novice users do not know how to interact with the exploration

tool, a list of basic interaction guide is provided in the top right corner of the

exploration panel (Figure 4.2, 4). Interactions can broadly be categorized in

highlighting, browsing and querying. Highlighting works in two way: it reveals a data

set’s annotation by showing related ontology terms in the list graph and tree map and

all data sets related to a term are highlighted when interacting with a term in the tree

map or list graph (T1). Mousing over the relevant parts of the exploration interface

triggers both interactions. For example, to reveal the annotations of a data set, the

user can mouse over a list entry and the related annotation terms in the list graph

and tree map are simultaneously highlight by changing the grey scale color to an

orange hue (Figure 4.4, 1). Hereby, the saturation of a highlighted rectangle in the

tree map is kept constant to the luminance of grey, thus, lighter shades of orange

indicate that a node is closer to a leaf than a more saturated orange. The tree map

highlights direct or indirect annotation terms; e.g. the data set being hovering in

Figure 4.4 is annotated with neuronal stem cell, which is not directly visualized at the

current tree map level, hence the parental terms somatic cell and precursor cell are

highlighted. The list graph visually distinguishes between direct and indirect

annotations such that nodes related to direct annotation terms are fully colored in

orange and indirect terms are only bordered in orange.

Figure 4.4: Data set-wise annotation term highlighting. (1) Normal mousing highlights

relevant nodes in the list graph (1a) and tree map (1b). (2) Pointing the mouse cursor on the

small magnifier icon will zoom out the list graph to the extent that all direct annotations are

visible (2a).

 53

Hovering an ontology term in respect to the list graph and tree map is

illustrated in Figure 4.5 (1). Nodes and rectangles are highlighted by a black border

(Figure 4.5, 1, 1a & 1c). When pointing the mouse over a node in the list graph, the

directly hovered node’s color is additionally inverted completely–i.e. the background

turns from white to black–to make it pop out from indirectly hovered super and sub

terms (Figure 4.5, 1c). List entries are shifted a little bit to the right, the font color

turns black and an extra black border is added to the left, hence using two channels:

color and motion to make related data sets pop out. Locking a term has been

implemented to provide a possibility for comparing different annotations. While

normal highlighting will be reverted as soon as the user leaves the hovered node or

rectangle, a locked term will remain highlighted until the user unlocks it. A small lock

icon depicts whether a term is locked (Figure 4.5, 2 & 2a). The tree map colors locked

terms in orange while the list graph adds a thick orange border to the node. A term

can be locked by a single mouse click on a rectangle or a click on the lock icon that

appears right to a node when hovering it. Data sets that are associated to the locked

term appear with a light orange background and a thick left orange border (Figure

4.5, 2b).

Figure 4.5: Term hovering and locking. (1) Hovering a node of the list graph (or rectangle of the

tree map) highlights the term itself as well as related super and sub terms in the list graph and

the tree map (1a). Data sets that have been annotated with the term being hovered are

highlighted as well (1b). Additionally, super and sub terms of the directly hovered node in the

list graph feature a superimposed partial bar to compare the value of the directly hovered node

with the indirectly hovered nodes. Green bars (1c) indicate an increased and red bars (1c)

indicate a decreased value compared to the hovered term. Locked nodes are highlighted in

orange (2).

There are two ways of browsing the term hierarchy: expanding a sub tree by

re-rooting the list graph and tree map or increasing the number of levels seen

simultaneously. In addition to visually browsing a branch, the data collection will be

queried according the new root. Thus, only data sets that are associated with the new

 54

root term will be retrieved. Figure 4.6 shows the transition from native cell (Figure

4.6, 1) to stem cell (Figure 4.6, 2). Browsing along the term hierarchy can be triggered

by a double click on a tree map’s rectangle or by a single click on the lock icon left to

a node in the list graph. The lock icon appears individually for each node when the

user hovers over the node of interest.

Figure 4.6: Browsing by branch. (1) The data collection is currently queried for native cell (1a),

indicated by the URL, a small lock next to the corresponding node in the list graph and the

highlighted term in breadcrumb-like navigation panel. 81 data sets (1b) are associated to native

cell. After drilling-down to stem cell (2 & 2a) the number of retrieved data sets decreased to 59

(2b). Terms that are visualized simultaneously in both diagrams are indicated by (2c). During

drill-down the list graph shows siblings of the current root node (2d) for quick comparison but

hides siblings of higher-level terms in order to avoid visual clutter.

In addition to browsing by branch, the user can increase the visible depth to

show nodes farther away from the root node (Figure 4.7). Given a visible depth of !,
all inner nodes at distance ! (from the root node) and all leaf nodes with a distance of

<= ! are shown. Completely white areas such as in Figure 4.7 (2) indicate very small

terms such that the branch-related extra padding prevents the rectangle form being

shown.

Sometimes it is desired to querying the data collection (T7) and filtering

subsets (T8) according to ontology annotations without wanted to browse just one

specific branch of the class hierarchy. The exploration tool provides set theoretic

queries across the whole annotation set hierarchy via the list graph visualization.

Pointing the mouse cursor over a node will display two icons to the left of the node.

The lock icon triggers browsing by branch and the union icon stands for querying. A

click on the latter or on the node will initiate a union query. Multiple clicks on the

same node will toggle through four different query modes as described in table 4. The

two modes union and intersection produce the same results when only one term is

queried at a time. For example, making a union query for Mus musculus and an

intersection query for stem cell will retrieve only data sets that are annotated with

 55

both terms. When a third intersection query for neural cell is issued the retrieved data

sets must be annotated with Mus musculus and either or both of the terms stem cell or

neural cell. Figure 4.8 illustrates the query capabilities of the exploration tool.

Figure 4.7: Tree map’s level zoom. (1) The visible depth is set to three. (2) The visible depth is

increased to nine.

Number of clicks

modulo four
Query mode

0 Inactive: retrieved data sets might be annotated with this term.

1
Union: retrieved data sets must be annotated with either of the

terms queried by union.

2 Intersection: retrieved data sets must be annotated with this term.

3
Exclusion: retrieved data sets must not be annotated with this

term.

Table 4: Description of the four different query modes.

 56

Figure 4.8: Annotation term querying and 2-bar visualization mode. (1) List graph has been re-

rooted to native cell, which simultaneously acts as a union query. Additionally, (2) all data sets

related to phagocytes are excluded and only the intersection between (3) precursor cell and (4)

leukocyte related data sets are retrieved. Recall of annotation term sets are visualized next to

precision by enabling the 2-bar visualization mode (5).

During the exploration process the user can choose to preview a data set

before having to navigate to it. Figure 4.2 (1e) indicates the location of the button to

open a data set’s preview panel. Once a user hovers over a result list the preview

button becomes more apparent. The layout of the preview is shown in Figure 4.9. The

different parts of the preview panel have been carefully designed and adjusted

according the results of the interviews (Chapter 3.2.2). The technology and biological

sample description are listed right after the short description. As they generally seem

to be most important to relevance. The analyses panel provides a notion of how

popular a certain data set is and even though it isn’t regarded as a key characteristic

for exploratory search it is immensely important for navigational search and the

broader purpose of the Refinery Platform as an integrated data management,

analyses and visualization system.

 57

Figure 4.9: Data set preview panel. The panel is divided into four main parts: summary,

analyses, references and protocols. The summary panel is comprised of a short descriptive

paragraph, information regarding the technologies and measurement types, biological sources,

the number of data files, and ownership. The analyses panel holds all analyses that have been

run on the data set from within the Refinery Platform. The references panel provides the title,

author, journal, publication date, a source link, and a link to PubMed as well as an expandable

abstract if available. Finally, the protocols panel lists sample treatments, data generation, and

post processing actions taken prior to importing into the Refinery Platform.

4.2 Case study
In order to demonstrate the usefulness of the proposed ontology-guided exploration

system, the Stem Cell Commons data has been used as a real-world case study. The

scope of this study has been limited to the exploration along the EFO given that 198

out of 199 Stem Cell Commons ISA-Tabs are directly or indirectly annotated with a

high number of EFO terms. The EFO provides a suitable topology for exploration since

it’s main focus is on structured descriptions of experimental factors of biological

experiments.

Data scientists have a strong need to find data sets that match experimental

characteristics (N1) and explore data sets with similar experimental factors (N2). The

 58

exploration tool addresses both needs by an integrated single-page application of

text-based search, data set previewing and the two visualization techniques: the list

graph and tree map. Often exploration is a multi-step process of identifying

putatively interesting data sets by sequentially scanning information. For example,

when searching for blood stem cell only four out of seven results contain information

about blood in the result list item. Hovering the cursor over the results immediately

provides feedback on the annotations. Also, a search zebrafish stem cell retrieves only

one query. While it is often unknown if truly everything is found, a quick exclusion

query on Danio rerio reveals that only one stem cell related zebrafish data set exist.

Generally, desired or undesired experimental factors can quickly be requested or

excluded after issuing a search and help to filter down results. Most importantly, the

data set preview and visualization interface does not interfere with search panel,

providing easy-to-use extension. Especially the data set preview is helpful to

understand search results when the search result’s keyword in context preview and

visualization do not reveal sufficient information.

Exploring the repository via branch-related queries and investigation of the

tree map at different levels of depth provides a quick overview of the annotation set

hierarchy of collections of data sets (N3) and helps to find higher-level sets that are

hidden by normal search.

Figure 4.10: Exploring high-level annotation sets. (1) Text-based search does not retrieve any

data sets related to leukocyte. Exploring Stem Cell Commons cell type related data sets (1a)

reveals leukocyte annotation set (2).

For example, given that a project leader, group leader or funder wants to get

an overview of all leukocyte-related data sets, searching for leukocyte leads to no

results (Figure 4.10, 1) but exploring different cell types quickly reveals a group of 12

data sets that are associated with leukocytes via subclass relationships (Figure 4.10,

2); e.g. granulocytes, lymphocytes, B cells, T cells, monocytes, etc. The same holds for

many other higher-level terms that have not been used for direct annotation but

describe larger collections of data sets due to the transitive nature of subclass

 59

relationships. Hereby, the combination of the list graph and tree map empowers rich

exploration that is hardly possible with text-based search only.

Finally, data curators and ontology engineers would like to get insights in the

overall annotation structure to identify areas that can be improved in terms of

annotations or term specificity. Looking at the abundance of No annotation or the

OWL:Thing can quickly identify the overall annotation coverage. In this case study, a

group of two data sets have been found instantaneously that are annotated with the

obsolete class obsolete_mammary gland, which should ideally be avoided. Browsing

experimental factor shows that most annotations are related to material entities and

provide the deepest exploration paths. Increasing the visual depth to three gives a

clearer overview of the annotation set topology (N5). Most of the largest annotation

sets are close to experimental factor, indicating little to explore (Figure 4.11, 2). For

example, when exploring chemical compound annotations a clear imbalance is

apparent. Two-thirds of all data sets are annotated with a chemical compound and

almost all correspond to Biotin (Figure 4.11, 2b). Hence the mutual information–a

measure for the reduction of uncertainty when knowing specific information–of

biotin is relatively low compared to most other terms. While it is expected that many

experiments include biotin due to it’s high binding affinity to streptavidin, which is

commonly used for isolation, purification or separation and called biotinylation.

Exploration-wise, those terms are less interesting, as they do not help to find specific

data sets. For a data curator it could be explored what other chemicals are associated

with data sets to provide a richer description.

Figure 4.11: Annotation set overview. (1) The tree map provides holistic overview of all terms of

distance two. (1a) The tree map and list graph visualization metrics–precision and area–

complement each other. (2) Depth of three reveals that most of the largest annotation sets are

close to the experimental factor. (2a) Cell type seems to provide most exploration depth. (2b)

Two-thirds of all data sets are annotated with biotin.

 60

5 Discussion

5.1 Conclusion
The ontology-guided exploration tool present throughout this thesis enables users to

explore large biological data repositories by means of text-based search, visual

browsing, and term-related querying. This application enriches discoverability and

findability of data collections that have been ontologically annotated by visualizing

semantic relationships of the annotation terms. The main contributions of this

project include the conversion of ontologies into a simplified global graph structure

that allows easy and quick access to the class hierarchy across multiple ontologies

and is far less resource intensive than triple stores. Furthermore, ontology-compliant

pruning of the original topology in accordance to the available data sets provides an

annotation set hierarchy, which is highly optimized for exploration. The visual

exploration interface is a unified single-page application that combines powerful

search, data set previewing with the tree map and list graph visualization to provide

an integrated exploration experience. The visualization serves two purposes:

sensemaking and pattern discovery as well as ontology-guided querying of the data

collection and could be regarded as a user-friendly semantic query tool. Finally, two

key limitations of ontology-guided exploration described by Gehlenborg (2010) have

been successfully overcome: multiple ontologies can be visualized and queried and

the user interface integrates both keyword-based querying and visual browsing,

giving the user the ability to use both simultaneously.

5.2 Limitations
The current exploration system should be regarded as a proof of principle only. The

reason is twofold: first, the decisions drawn from the needs and required tasks as well

as the interview lack a large-scale evaluation. While the current application enriches

existing system, it needs to be proven that users adapt these contributions in their

search process. Also, the implementation provided needs further improvements that

are outside of the scope of this thesis. For example, to allow the exploration of many

large ontologies simultaneously a server-side component needs to preprocess the

ontology structure to relieve the client-side visualization application and ensure

responsiveness. Furthermore, the current integration of the search system and visual

exploration tools is limited in two ways. First, there is only one incremental

exploration step possible, i.e. when the user initiates a search query the only

additional step possible is to filter down these search results. The user cannot initiate

a second search after filtering without resetting previous actions. Second, there is

currently no possibility to loosen constraints of search results via annotation term

queries as described in (T9). Also, comparing different groups of annotations terms

(T3) is currently only possible indirectly.

 61

Apart from the application side, the currently greatest concern regarding an

ontology-guided exploration approach is that its usefulness dramatically depends on

the quality of data curation. Most data collections provide none or only very few

ontology annotations. And even if ontology annotations are available, other metadata

are currently not incorporated. Fortunately, using this exploration tool it is easily

possible to evaluate the current state of annotation and find areas for improvements.

Also, having successfully addressed previous limitations and allowing an arbitrary

number of ontologies to be visualized introduces a novel concern: how to determine

meaningful entry points for each ontology in an automated fashion? Quite often

terms close to the absolute root term (OWL:Thing) are very technical and provide little

to no use for browsing.

Another limitation arises from pruning the original term hierarchy to a strict

containment set hierarchy where each subclass must represent a strict subset in

terms of the data sets associated to it. While this is desperately needed to provide a

data structure for exploration that avoids meaningless browse steps, this heavily

obscures the original structure and hides intermediate terms. For example, the data

used in the case study described in Chapter 4.2 originally consists of 17239 ontology

classes of which only 83 terms have been used to annotate the Stem Cell Commons

data. Including all parental terms up to OWL:Thing, a total of only 156 terms link to

data sets and thus are useful for browsing. Users might wonder what happened to

unused or intermediate terms.

5.3 Outlook
The current exploration tool can be extended in multiple ways to further increase the

interactions between classic search and exploration. An application that captures the

individual steps of the whole exploration process could address the currently limited

interplay between the search and the two visualization-based browsing methods.

Often the users go back and forth, change query keywords or browse in different

directions depending the previous results. Having a way to look at previous steps, link

individual results, and provide an overview of the area already discovered without

having to leave the current view could facilitate understanding of the consequences of

a new search step and also point out undiscovered areas of the data repository. Given

Shneiderman’s Information Seeking Mantra (Shneiderman, 1996), this feature would

relate to history. One of the principal reasons of a data scientist or analyst for

searching for data is to compile a collection of data sets to address biological

questions and to compare quality of findings. Thus, in most cases more than a single

data set is needed. Providing a way to store highly relevant data sets within the

exploration interface could support compilation and enhance comparability across

data sets that have been found along an extended exploration process. The idea is

related to what Shneiderman called the extraction task (Shneiderman, 1996) and

originates from the omnipresent shopping card that every online shop provides. For

 62

example, similar to how users explore books, clothing and other things, clinical data

scientists could collect patient data for studies or clinical trials. Another useful

extension could be a simultaneous search across data sets and ontology terms. This

would facilitate finding annotation terms of interest more efficiently.

Bibliography

Alper,B. et al. (2011) Design study of LineSets, a novel set visualization technique.

TVCG, 17, 2259–2267.

Alsallakh,B. et al. (2014) Visualizing Sets and Set-typed Data: State-of-the-Art and

Future Challenges. The Eurographics Association.

Andrews,K. et al. (2001) Search result visualisation with xFIND. UIDIS-01, 50–58.

Andrews,K. et al. (2004) The visualization of large hierarchical documents spaces with

InfoSky. Proceedings of CoData'04-Workshop on Information Visualization,

Presentation, and Design.

Anscombe,F.J. (2012) Graphs in Statistical Analysis. The American Statistician, 27, 17–

21.

Archambault,D. et al. (2008) GrouseFlocks: Steerable Exploration of Graph Hierarchy

Space. IEEE Trans. Visual. Comput. Graphics, 14, 900–913.

Ashburner,M. et al. (2000) Gene Ontology: tool for the unification of biology. Nat.

Genet., 25, 25–29.

Bederson,B.B. et al. (2002) Ordered and quantum treemaps: Making effective use of

2D space to display hierarchies. TOG, 21, 833–854.

Berners-Lee,T. and Hendler,J. (2001) The semantic web. Scientific american, 284(5),

28-37.

Bostock,M. et al. (2011) D³: Data-Driven Documents. TVCG, 17, 2301–2309.

Brazma,A. et al. (2001) Minimum information about a microarray experiment

(MIAME)-toward standards for microarray data. Nat. Genet., 29, 365–371.

Brehmer,M. and Munzner,T. (2013) A multi-level typology of abstract visualization

tasks. TVCG, 19, 2376–2385.

Brooks,J.L. (2014) Traditional and New Principles of Perceptual Grouping. In:

Wagemans,J. (2015) Oxford Handbook of Perceptual Organization. Oxford

University Press.

Bruls,M. et al. (2000) Squarified Treemaps. VisSym, 33–42.

Clarkson,E. et al. (2009) ResultMaps: Visualization for Search Interfaces. IEEE Trans.

Visual. Comput. Graphics, 15, 1057–1064.

Collins,C. et al. (2009) Bubble sets: revealing set relations with isocontours over

existing visualizations. IEEE Trans. Visual. Comput. Graphics, 15, 1009–1016.

Dinkla,K. et al. (2014) eXamine: exploring annotated modules in networks. BMC

Bioinformatics, 15, 201.

 63

Dinkla,K. et al. (2012) Kelp Diagrams: Point Set Membership Visualization. Computer

Graphics Forum, 31, 875–884.

Fujibuchi,W. et al. (2007) CellMontage: similar expression profile search server.

Bioinformatics, 23, 3103–3104.

Gehlenborg,N. (2010) Visualization and exploration of transcriptomics data.

Gehlenborg,N. and Wong,B. (2012) Points of view: Networks. Nature Methods, 9, 115–

115.

Glimm,B. et al. (2014) HermiT: An OWL 2 Reasoner. J Autom Reasoning, 53, 245–269.

Glueck,M. et al. (2015) PhenoBlocks: Phenotype Comparison Visualizations. IEEE Trans.

Visual. Comput. Graphics, 22, 101–110.

Gruber,T.R. (1993) A translation approach to portable ontology specifications.

Knowledge Acquisition, 5, 199–220.

Gruber,T.R. (1995) Toward principles for the design of ontologies used for knowledge

sharing? International Journal of Human-Computer Studies, 43, 907–928.

Hearst,M.A. (2009) Search User Interfaces. Cambridge University Press.

Hearst,M.A. (1995) TileBars: visualization of term distribution information in full text

information access. Proceedings of the SIGCHI conference on Human factors in

computing systems. ACM Press/Addison-Wesley Publishing Co.

Ho Sui,S. et al. (2013) The Stem Cell Commons: an exemplar for data integration in the

biomedical domain driven by the ISA framework. AMIA Jt Summits Transl Sci

Proc, 2013, 70.

Hoeber,O. and Yang,X.D. (2006) The Visual Exploration of Web Search Results Using

HotMap. Information Visualization, 2006. IEEE, 157–165.

Horridge,M. and Bechhofer,S. (2011) The OWL API: A Java API for OWL ontologies.

Semantic Web, 2, 1, 11-21.

Hotchkiss,G. et al. (2007) Search engine results: 2010. Enquiro Research.

Johnson,B. and Shneiderman,B. (1991) Tree-maps: a space-filling approach to the

visualization of hierarchical information structures. Visualization, 1991,

Visualization'91, Proceedings., IEEE Conference on. IEEE.

Kim,B. et al. (2007) Visualizing Set Concordance with Permutation Matrices and Fan

Diagrams. Interact Comput, 19, 630–643.

Koboldt,D.C. et al. (2012) Comprehensive molecular portraits of human breast

tumours. Nature, 490, 61–70.

Kolesnikov,N. et al. (2015) ArrayExpress update--simplifying data submissions.

Nucleic Acids Research, 43, D1113–6.

Kuhlithau,C.C. (1991) Inside the search process: Information seeking from the user

perspective. JASIS, 42, 5, 361-371.

Lex,A. et al. (2014) UpSet: Visualization of Intersecting Sets. TVCG, 20, 1983–1992.

Lonsdale,J. et al. (2013) The Genotype-Tissue Expression (GTEx) project. Nature, 45,

580–585.

Machlup,F. (1983) The study of information: Interdisciplinary messages. Wiley.

 64

Malone,J. et al. (2010) Modeling sample variables with an Experimental Factor

Ontology. Bioinformatics, 26, 1112–1118.

Manning,C.D. et al. (2008) Introduction to information retrieval. Cambridge University

Press.

Marchionini,G. (1995) Information Seeking in Electronic Environments. Cambridge

University Press.

Morville,P. (2005) Ambient findability: Libraries at the crossroads of ubiquitous

computing and the internet. O'Reilly Media, Inc.

Munzner,T. (2014) Visualization Analysis and Design. CRC Press.

Oelke,D. et al. (2014) Comparative Exploration of Document Collections: a Visual

Analytics Approach. CGF, 33, 201–210.

Palmer,S. and Rock,I. (1994) Rethinking perceptual organization: The role of uniform

connectedness. Psychonomic Bulletin & Review, 1, 29–55.

Palmer,S.E. (1992) Common region: a new principle of perceptual grouping. Cogn

Psychol, 24, 436–447.

Pickens,J. et al. (2008) Algorithmic mediation for collaborative exploratory search.

SIGIR, 315–322.

Pirolli,P. and Card,S.K. (1995) Information Foraging in Information Access

Environments. CHI, 51–58.

Pirolli,P. et al. (2000) The effect of information scent on searching information:

visualizations of large tree structures ACM, New York, New York, USA.

Reiterer,H. et al. (2005) INSYDER: a content-based visual-information-seeking

system for the Web. Int J Digit Libr, 5, 25–41.

Robinson,P.N. et al. (2008) The Human Phenotype Ontology: a tool for annotating and

analyzing human hereditary disease. Am. J. Hum. Genet., 83, 610–615.

Robinson,P.N. and Bauer,S. (2011) Introduction to bio-ontologies. CRC Press.

Rocca-Serra,P. et al. (2010) ISA software suite: supporting standards-compliant

experimental annotation and enabling curation at the community level.

Bioinformatics, 26, 2354–2356.

Rogers,F.B. (1963) Medical subject headings. Bull Med Libr Assoc, 51, 114–116.

Russell,D.M. et al. (1993) The cost structure of sensemaking. INTERCHI, 269–276.

Sadana,R. et al. (2014) OnSet: A Visualization Technique for Large-scale Binary Set

Data. IEEE Trans. Visual. Comput. Graphics, 20, 1993–2002.

Schulz,H.J. (2011) Treevis.net: A Tree Visualization Reference. IEEE Comput Graph Appl,

31, 11–15.

Shneiderman,B. (1996) The eyes have it: a task by data type taxonomy for

information visualizations. IEEE Comput. Soc. Press, pp. 336–343.

Smith,A. et al. (2014) Hierarchie: Visualization for Hierarchical Topic Models.

Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 71–78.

Smith,B. et al. (2007) The OBO Foundry: coordinated evolution of ontologies to

support biomedical data integration. Nature Biotechnology, 25, 1251–1255.

 65

Song,H. et al. (2010) A comparative evaluation on tree visualization methods for

hierarchical structures with large fan-outs. CHI, 223–232.

Turnbull,D. and Berryman,J. (2016) Relevant Search. Manning Publications. (in press)

Vliegen,R. et al. (2006) Visualizing Business Data with Generalized Treemaps. IEEE

Trans. Visual. Comput. Graphics, 12, 789–796.

Wertheimer,M. (1938) Laws of organization in perceptual forms. A source book of

Gestalt psychology.

Wertheimer,M. (1923) Untersuchungen zur Lehre von der Gestalt. Psychological

Research, 4, 1, 301-350.

Whetzel,P.L. et al. (2011) BioPortal: enhanced functionality via new Web services from

the National Center for Biomedical Ontology to access and use ontologies in

software applications. Nucleic Acids Research, 39, W541–5.

Wilson,T.D. (1981) On user studies and information needs. Journal of Documentation,

37, 3–15.

Zhang,J. and Marchionini,G. (2004) Coupling browse and search in highly interactive

user interfaces: a study of the relation browser++ ACM, New York, New York,

USA.

Zhao,S. et al. (2005) Elastic hierarchies: combining treemaps and node-link diagrams.

Information Visualization, 2005. IEEE, pp. 57–64.

